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Abstract. Most probabilistic programming languages for Bayesian in-
ference give either operational semantics in terms of sampling, or deno-
tational semantics in terms of measure-theoretic distributions. It is im-
portant that we can relate the two, given that practitioners often reason
both analytically (e.g., density) as well as algorithmically (i.e., in terms
of sampling) about distributions. In this paper, we give denotational se-
mantics to a functional language extended with continuous distributions
and show that by restricting attention to computable distributions, we
can realize a corresponding sampling semantics.
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1 Introduction

Probabilistic programming for Bayesian inference hopes to simplify probabilistic
modeling by (1) providing a programming language for users to formally specify
probabilistic models and (2) automating the task of inferring model parameters
given observed data.

A natural interpretation of these probabilistic programs is as a sampler
(e.g., [9, 35]). In essence, we can view a probabilistic program as describing
a sampling procedure encoding how one believes observed data is generated.
The flexibility of sampling has inspired embeddings of probabilistic primitives in
full-fledged programming languages, including Scheme and Scala (e.g., [9, 23]).
However, languages based on sampling often avoid the basic question of what it
means to sample from a continuous distribution. For instance, these languages
either have semantics given by an implementation in a host-language (e.g., [9]),
or use an abstract machine that assumes reals and primitive continuous distri-
butions [21].

Another approach grounds the semantics of probabilistic programs in mea-
sure theory, which is the foundation of probability theory (e.g., [3, 29]). Measure
theory provides a rigorous definition of conditioning, and a uniform treatment



of discrete and continuous distributions. For instance, measure-theoretic prob-
ability makes sense of why the probability of obtaining any sample from an
(absolutely) continuous distribution is zero, as well what it means to observe a
probability zero event. These situations are encountered frequently in practice, as
many models incorporate both continuous distributions and observation of real-
valued data. Consequently, measure-theoretic semantics have been proposed as a
generalization of sampling semantics (e.g., [3]). However, this approach also has
its drawbacks. First, measure theory has been developed without programming
language constructs in mind (e.g., recursion and higher-order functions), unlike
standard denotational semantics. Hence, languages based on measure theory of-
ten omit language features (e.g., [3]) or develop new meta-theory (e.g., [29]).
Second, measure-theoretic semantics must also develop a corresponding opera-
tional theory. For instance, Toronto et al. [29] give denotational semantics and
later show how to implement a sound approximation of their ideal semantics
because it is not directly implementable.

In this paper, we address the shortcomings of these existing approaches, and
give denotational semantics to a functional language with continuous distribu-
tions that uses largely standard semantic constructs, and make the connection
to a faithful sampling implementation. Our approach is motivated by Type-2
computable distributions, which admit Type-2 computable sampling procedures.3

Computable distributions have been defined and studied in the context of Type-2
(Turing) machines and algorithmic randomness (e.g., [6, 31, 7]). Their implica-
tions for probabilistic programs have also been hinted at in the literature (e.g., [1,
5]). Hence, we will recast these ideas in the context of high-level probabilistic
languages for Bayesian inference.

There are advantages to giving semantics with computable distributions in
mind, instead of directly using measure-theoretic distributions. First, every com-
putable distribution admits a sampling algorithm, which operates on input bit-
randomness (e.g., a stream of coin flips) instead of requiring black-box primitives
that generate Uniformly distributed values. Indeed, a computable distribution
is completely characterized by a sampling algorithm (see Prop. 1), which reflects
the intuition that we can express a distribution by describing how to sample from
it. Second, we can use results from computability theory to guide the design of
such a language. In particular, Ackerman et al. show that computing a condi-
tional distribution is akin to solving the Halting problem [1]. Thus, our language
provides only conditioning operators for restricted settings. Finally, computable
distributions can be represented as ordinary program values. This means that we
can use standard programming language meta-theory, and it enables us to scale
our approach to probabilistic languages embedded in full-fledged programming
languages proposed by the machine learning community (e.g., [9, 23]).

However, our approach has some limitations. As we already mentioned above,
conditioning is not computable in general so we do not give semantics to a

3 Because we will use the phrase “Type-2 computable” frequently, we will sometimes
abbreviate it to just “computable” when it is clear from context that we are referring
to Type-2 computability.



generic conditioning operator (see Sec. 5). Nonetheless, the situation where we
do give semantics to conditioning corresponds to an effective version of Bayes
rule, which is central to Bayesian inference in practice. Second, even though
our approach gives realizable semantics, it is not necessarily efficient because
algorithms that operate on computable distributions compute by enumeration.
It would be interesting to see if we can efficiently implement algorithms that
compute approximately with computable distributions, but this is not in scope
for this paper.

2 The basic idea

We begin by expanding upon the issues involved in giving semantics to prob-
abilistic programming languages. In order to focus on the probabilistic aspect,
we informally consider simple, first-order languages without recursion, extended
with discrete and continuous distributions.

We start with adding discrete distributions with finite support to a pro-
gramming language (e.g., [25]), and illustrate how sampling and distribution
semantics can coincide. A distribution with finite support assigns positive prob-
ability to a finite number of values in its domain. We can interpret a type Dist α
as a probability mass function, which maps values of type α (written VJαK) to a
probability in the interval [0, 1], such that the probabilities sum to 1. A discrete
distribution is completely characterized by its probability mass function.

(Finite discrete) VJDist αK , VJαK→ [0, 1] where |VJαK| finite

As others have observed, probabilities form a monad (e.g., [8, 25]). Monadic bind
x← e1 ; e2 re-weights the probability mass function of e2 by summing over all
possible values e1 can take on and re-weighting according to its probability. We
write the expression denotation function as EJΓ ` e : αKρ ∈ VJαK under a well-
typed environment ρ (w.r.t. Γ ). Below, let f1 = EJΓ ` e1 : Dist α1Kρ be the
denotation of e1.

(Denotational) EJΓ ` x← e1 ; e2 : Dist α2Kρ (v2) ,∑
v1∈dom(f1)

EJΓ, x : α1 ` e2 : Dist α2Kρ[x 7→ v1] (v2) · (f1(v1))

Alternatively, we can interpret monadic bind x ← e1 ; e2 as sampling: “draw a
sample according to distribution e1, bind the value to variable x, and continue
with distribution e2.” We can express sampling SJΓ ` e : αKρ : 2ω → VJαK as
bind in a state monad (written ←s) whose state is a stream of bit-randomness
2ω.

(Sampling) SJx← e1 ; e2Kρ , v ←s SJe1Kρ ; SJe2Kρ[x 7→ v]

If we restrict the probabilities to be rational, then everything is discrete and
finite, which coincides with traditional notions of computation. We can relate
sampling to the denotational view as

P(SJeKρ = v) = EJΓ ` e : αKρ (v)



where the probability P(·) is with respect to the distribution on the input bit-
randomness.

Next, we can consider continuous distributions in the context of a proba-
bilistic language. One approach is to interpret Dist α as a measure-theoretic
distribution (e.g., [3]). A measure µ : F → [0,∞] on X maps a (measurable)
set A ∈ F , where F is a certain collection of subsets of X called a σ-algebra,
to a non-negative real number, such that µ is countably additive and µ(∅) = 0.
Then, a probability measure or probability distribution is a measure µ such that
the mass of the entire space is 1 (i.e., µ(X) = 1).

(Measure) VJDist αK , F → [0, 1] where F is a σ-algebra

We can use monadic bind again, but now the re-weighting is accomplished by a
(Lebesgue) integral.

(Denotational) EJΓ ` x← e1 ; e2 : Dist α2Kρ(A) ,∫
(λv. EJΓ, x : α1 ` e2 : Dist α2Kρ[x 7→ v](A))d(EJΓ ` e1 : Dist α1Kρ)

Sampling has the same form as before. We can relate the sampling with the
denotational view as the push-forward of µiid (distribution on 2ω corresponding
to independent and identically distributed (i.i.d.) fair coin flips) with respect to
the sampling function.

µiid ◦ SJeKρ−1 = EJeKρ

Note that we could have also used the push-forward to relate the denotational
view for the discrete case. Unlike the finite discrete case, we cannot implement
SJ·Kρ for all continuous distributions on a Turing machine. There are a count-
able number of Turing machine configurations, but an uncountable number of
continuous distributions.

In this paper, we propose to address the gap between a denotational seman-
tics with continuous distributions and an algorithmic sampling interpretation
using Type-2 computable distributions. To this end, we will present a core prob-
abilistic language extending PCF with distributions and give it semantics using
largely standard techniques. Because we want the denotational semantics to be
easily relatable to a sampling semantics, we will be restricted to considering only
distributions on topological spaces (in this paper, computable metric spaces) in-
stead of measurable spaces (i.e., the tuple (X,F) of a set and a σ-algebra) used
in standard measure-theoretic probability. Thus, our semantics can support only
Borel measures, i.e., a measure defined uniquely on the open sets of the topology.
Nonetheless, this covers a wide class of distributions used in practice, including
familiar continuous distributions on the reals R (e.g., Uniform, Gaussian, and
etc.) and (infinite) products of reals.

After we give the semantics, we will identify a subset of the denotations as
corresponding to Type-2 computable objects. Importantly, we can implement
Type-2 computable operators in a standard programming language. Thus, we
will provide an implementation of the sampling semantics as a Haskell library.



Moreover, the semantics of conditioning (when computable) can be given as a
program that computes the conditional distribution (see Sec. 5). Hence, we can
also give semantics to conditioning as a library function. We will see that we can
write familiar probabilistic programs with familiar reasoning principles. Because
we do not need anything beyond standard language semantics, our approach can
also be used to give semantics to probabilistic languages embedded in full-fledged
languages proposed and used by the machine learning community (e.g., [9, 23,
35]).

3 Background on computability and distributions

In this section, we introduce background on Type-2 computability (see Type
Two Theory of Effectivity or TTE [32]), which can be used to provide a notion
of computability on reals and distributions. The background will primarily be
useful for connecting the denotational semantics to an implementation of the
sampling semantics (see Sec. 4.2). We start by illustrating the basic idea behind
Type-2 computability using computable reals.

Intuitively, a real is computable if we can enumerate its binary expansion.
Of course, a Turing machine algorithm can only enumerate a finite prefix of the
expansion in a finite amount of time. Thus, Type-2 computability extends the
conventional notion of algorithm (which terminates) to account for computing on
bit-streams. A Type-2 algorithm is specified using conventional Turing machine
code (i.e., with finite set of states and finite state transition specification) and
computes (partial) bit-stream functions (i.e., gM : {0, 1}ω ⇀ {0, 1}ω) such that
finite prefixes of the output are determined by finite prefixes of the input (called
the finite prefix property.) This captures the intuition that a Type-2 algorithm
computes a function to arbitrary precision in finite time using a finite amount
of input, even though computing the entire output bit-stream cannot be done
in finite time. Now that we have clarified what we mean by enumerate, we can
return to computable reals.

More formally, a real x ∈ R is computable if we can enumerate a fast Cauchy
sequence of rationals that converges to x. Recall that a sequence (qn)n∈N is
Cauchy if for every ε > 0, there is an N such that d(qn, qm) < ε for every n,m >
N . Thus, the elements of a Cauchy sequence become closer and closer to one
another as we traverse the sequence. When d(qn, qn+1) < 2−n for all n, we call
(qn)n∈N a fast Cauchy sequence. Hence, the representation of a computable real
as a fast Cauchy sequence evokes the idea of enumerating its binary expansion.

As an example of a computable real, consider π and one possible series ex-
pansion of it below [2].

π =

∞∑
k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
An algorithm can use the above series expansion and a rate of convergence to
obtain a fast Cauchy sequence (e.g., the BPP algorithm [2]).



A function f : R→ R is computable if given a fast Cauchy encoding of x ∈ R,
there is an algorithm that outputs a fast Cauchy sequence of f(x). For example,
addition + : R × R → R is computable because an algorithm can add the
(Cauchy) input sequences element-wise to obtain a (Cauchy) output sequence.
Next, we introduce computable metric spaces, which can be used to generalize
the ideas above to computable distributions.

As a reminder, metric space (X, d) is a set X equipped with a metric d :
X × X → R. A metric induces a collection of sets called (open) balls, where
a ball centered at c ∈ X with radius r ∈ R is the set of points within r of c,
i.e., B(c, r) = {x ∈ X | d(c, x) < r}. In this paper, the topology we associate
with a metric space will be the one induced by the collection of balls. Hence, a
Borel measure will assign probabilities to open balls. For example, (R, dEuclid)
gives the familiar Euclidean topology on the reals R (with Euclidean distance
dEuclid) and a Borel distribution on the reals assigns probabilities to open inter-
vals.

To define a computable metric space, we need some additional properties
on (X, d). First, we must be able to approximate elements of X using elements
from a simpler, countable set S. This way, we can encode an element s ∈ S as a
finite sequence of bits and an element x ∈ X as the stream of bits corresponding
to a sequence of elements of S that converges to x. More formally, we say S is
dense in X if for every x ∈ X, there is a sequence (sn)n∈N that converges to x,
where sn ∈ S for every n. Second, (X, d) should be complete, i.e., every Cauchy
sequence comprised of elements from X also converges to a point in X. Putting
this together gives the definition of a computable metric space.

Definition 1. [12, Def. 2.4.1] A computable metric space is a tuple (X, d, S)
such that

– (X, d) is a complete metric space.
– S is a countable, dense subset of X with a fixed numbering.
– For all i, j ∈ N, d(si, sj) is computable, uniformly in 〈i, j〉 (i.e., the function

(i, j) 7→ d(si, sj) is computable), where 〈·, ·〉 : N × N → N is a pairing
function.

The computable reals we gave at the beginning corresponds to the computable
metric space (R, dEuclid,Q).

A computable distribution over the computable metric space (X, d, S) can be
defined as a computable point in the computable metric space (M(X), dρ,D(S)),
where M(X) is the set of Borel probability measures on a computable metric
space (X, d, S), dρ is the Prokhorov metric (see [12, Defn. 4.1.1.]), and D(S)
is the class of distributions with finite support at ideal points S and rational
masses (see [12, Prop. 4.1.1]). For instance, the sequence below converges to the
standard Uniform distribution on the interval (0, 1).

{0 7→ 1

2
,

1

2
7→ 1

2
}, {0 7→ 1

4
,

1

4
7→ 1

4
,

2

4
7→ 1

4
,

3

4
7→ 1

4
}, . . . ,

Thus, a Uniform distribution can be seen as the limit of a sequence of increas-
ingly finer discrete, Uniform distributions. Although the idea of a computable



distribution as a computable point is fairly intuitive for the standard Uniform
distribution, it may be less insightful for more complicated distributions.

Alternatively, we can think of a computable distribution on a computable
metric space (X, d, S) in terms of sampling, i.e., as a (Type-2) computable func-
tion {0, 1}ω → X. To make this more concrete, we sketch an algorithm that
samples from the standard Uniform. The idea is to generate a value that can be
queried for more precision instead of a sample x in its entirety. Thus, a sampling
algorithm will interleave flipping coins with outputting an element to the desired
precision, such that the sequence of outputs (sn)n∈N converges to a sample.

For instance, one binary digit of precision for a standard Uniform corre-
sponds to obtaining the point 1/2 because it is within 1/2 of any point in the
unit interval. Demanding another digit of precision produces either 1/4 or 3/4
according to the result of a fair coin flip. This is encoded below using the func-
tion bisect, which recursively bisects an interval n times, starting with (0, 1),
using the random bit-stream u to select which interval to recurse on.

uniform : (Nat→ Bool)→ (Nat→ Rat)

uniform , λu. λn. bisect u 0 1 n

In the limit, we obtain a single point corresponding to the sample.

The sampling view is equivalent to the definition of a computable distribution
in terms of computable metric spaces. From a practical perspective, this means
we can implement probabilistic programs as samplers and still capture the class
of computable distributions. For completeness, we state the equivalence below.
First, a computable probability space [12, Def. 5.0.1] (X , µ) is a pair where X
is a computable metric space and µ is a computable distribution. A function
s : (X , µ)→ (Y, ν) is measure-preserving if ν(A) = µ(s−1(A)) for all measurable
A. We call a distribution µ on X samplable if there is a computable function
s : (2ω, µiid)→ (X , µ) such that s is computable on dom(s) of full-measure and
is measure-preserving.

Proposition 1. (Computable iff samplable) A distribution µ ∈M(X) on com-
putable metric space (X, d,S) is computable iff it is samplable (see [4, Lem. 2
and 3]).

4 Semantics

In this section, we describe a core probabilistic language based on PCF and
give it semantics using largely standard constructs (see [34]). The semantics of
distributions will be given in terms of both valuations (a topological variant of
distributions) and samplers. After we give the semantics, we identify a subset
of the denotations as Type-2 computable, and give an implementation of the
sampling semantics as a Haskell library. We will refer to Haskell plus the library
as λCD.



4.1 A core language and its semantics

Syntax The core language extends a basic functional language (PCF with
pairs) with reals (constants c) and distributions (constants d). The core language
does not have a primitive for conditioning on a distribution. Instead, we will add
conditioning as a library function later (see Sec. 5).

α ::= PCF types + pairs | Real | Samp α
e ::= PCF exp + pairs | c | d | e⊕ e | return e | x← e ; e

The primitives⊕ provide primitive operations on reals. The expressions return e
and x ← e1 ; e2 can be thought of as return and bind in the sampling monad.
The type Real refers to reals and the type Samp α refers to distributions. The
typing rules are standard. The type Samp α is well-formed if values of type α
support the operations required of a computable metric space. In this language,
this includes naturals N, reals R, and products of computable metric spaces.
Interpretation of types The interpretation of types will use both complete
partial orders (CPO’s) and computable metric spaces. The former is a standard
structure from denotational semantics used to give meaning to recursion. The
latter was introduced in the background and are the spaces that we consider
distributions on.

To start, we introduce basic notation for constructing CPO’s that will be
used to give the interpretation of types VJ·K. The construction Disc(X) equips
the set X with the discrete order. D⊥ creates a lifted domain with underlying
set {bdc | d ∈ D} ∪ {⊥} with the usual lifted ordering. The CPO construction
D ⇒ E creates the CPO of continuous functions between CPO’s D and E.

The interpretation of types VJ·K is defined by induction on types. We give
the interpretation of basic types (sans distributions Samp α) below following a
call-by-name evaluation strategy (to better match the Haskell implementation.)

VJNatK , Disc(N)⊥

VJ(α1, α2)K , (VJα1K× VJα2K)⊥
VJα1 → α2K , (VJα1K⇒ VJα2K)⊥
VJRealK , Disc(R)⊥

The interpretation of basic PCF types is standard. The reals R are given the dis-
crete order (information ordering). In order to give the interpretation of Samp α,
we will need to write the space of distributions on VJαK as a CPO. To this end,
we will use valuations, a topological variation of a distribution.

A valuation ν : O(X) → [0, 1] is a function that assigns to each open set
of a topological space (X,O(X)) a probability, such that it is strict (ν(∅) =
0), monotone, and modular (ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ) for every
open U and V ). The type of a valuation can be given as a CPO. To see this,
let O⊆(X) be the open sets on a space X ordered by set inclusion and let
[0, 1]↑ be the interval [0, 1] ordered by ≤. Then, a valuation can be seen as an
element of the CPO O⊆(X)⇒ [0, 1]↑. A valuation is similar to a measure (hence,



topological variant of distribution), but a valuation does not necessarily satisfy
countable additivity. A valuation that does is called a ω-continuous valuation,
where ω-continuous means ν(∪n∈NOn) = supn∈N ν(On) for On open for n ∈
N. Indeed, every Borel measure µ on X can be restricted to a ω-continuous
valuation µ|O(X) : [O⊆(X) ⇒ [0, 1]↑]. Moreover, a computable distribution can
be identified with a ω-continuous valuation (see [12, Prop. 4.2.1] and [28]). Now,
we can proceed to interpret Samp α.

One idea used in the study of probabilistic powerdomains is to use valuations
to put distributions on CPO’s (see [13]) using the CPO’s Scott topology. For
example, a valuation on the CPO Disc(N) results in the powerset 2N, which is
the σ-algebra associated with distributions on the naturals. However, we cannot
apply a valuation in this manner to Disc(R) to obtain a familiar continuous
distribution used in statistics. For example, a valuation on the Scott topology
derived from the CPO Disc(R) results in the powerset 2R, which is not the Borel
σ-algebra on R. Instead, we will start with the topology of a computable metric
spaces which includes familiar continuous distributions, and then derive a CPO
from it to support recursion.

To this end, we will use the specialization preorder (written S), which orders
x v y if every open set that contains x also contains y, to convert a topological
space (X,O(X)) into a preordered set. Intuitively, x v y if x contains less in-
formation than y. We can always find an open ball that separates two distinct
points x and y (the distance between two distinct points is positive) in a com-
putable metric space. Hence, the specialization preorder of a computable metric
space always gives the discrete order (information ordering), and hence degener-
ately, a CPO. For example, the specialization preorder of the computable metric
space (R, d,Q) is Disc(R). We can now start to put this together to convert a
computable metric space into a CPO.

We write VM J·K to associate a well-formed type with a computable metric
space, defined by induction on well-formed types.

VM JNatK , (N, ddiscrete,N)

VM JRealK , (R, dEuclid,Q)

VM J(α1, α2)K , VM Jα1K× VM Jα2K

The interpretation of naturals and reals are standard. The interpretation of a
product VM J(α1, α2)K forms the product of computable metric spaces VM Jα1K
and VM Jα2K. As one last step, we will need to handle ⊥ for recursion. One can
check the specialization preorder of the topology O(bXc)∪{bXc∪{⊥}} produces
Disc(X)⊥. We will write L to lift a computable metric space.

The interpretation of the type Samp α is a pair of a valuation and a sampling
function realizing the valuation, where pshα computes the push-forward measure
and relates the valuation component to the sampling component. Below, let
D×F E be the CPO {(d, e) ∈ D×E | F (e) = d} with a product ordering, where
F is a continuous function, and 2ω is the CPO of continuous functions between



Disc(N) and Disc({0, 1}).

VJSamp αK , [O⊆(S ◦ L(VM JαK))⇒ [0, 1]↑]×pshα
(2ω ⇒ S ◦ L(VM JαK)⊥) .

This explicitly relates the valuation component to the sampling function com-
ponent. We will see the implementation of the sampling semantics will identify
2ω ⇒ S ◦ L(VM JαK)⊥ with a Type-2 computable sampling algorithm.

The denotation of the sampler contains an extra lifting to distinguish bot :
Samp α from return bot : Samp α, where EJbotKρ = ⊥. In the former, we obtain
the bottom valuation, which assigns 0 mass to every open set. This corresponds
to the sampling function λu ∈ 2ω. ⊥. In the latter, we obtain the valuation that
assigns 0 mass to every open set, except for {bXc ∪ ⊥} which is assigned mass
1. This corresponds to the sampling function λu ∈ 2ω. b⊥c.
Semantics The expression denotation function EJΓ ` e : αKρ ∈ VJαK is de-
fined by induction on the typing derivation. The denotation is also parameterized
by a global environment Υ that interprets constants c and primitive distribu-
tions d. The following notation will be used for writing the semantics. We lift
a function using † ∈ (D ⇒ E⊥) ⇒ (D⊥ ⇒ E⊥), defined in the usual way. The
function lift(d) = bdc lifts an element. Finally, the notation let x = e1 in e2 is a
strict let binding.

Now, we describe the expression denotation function. The semantics of the
PCF expressions are standard and are not shown.

EJΓ ` c : RealKρ , Υ (c)

EJΓ ` e1 ⊕ e2 : RealKρ , EJe1Kρ⊕⊥ EJe2Kρ
EJΓ ` d : Samp αKρ , Υ (d)

EJΓ ` return e : Samp αKρ , (λU. 1U (EJeKρ), λu. bEJeKρc)

EJΓ ` x← e1 ; e2 : Samp α2Kρ = (λU.

∫
hU dµ, g† ◦ f) where

µ = π1(EJe1Kρ)

hU = λv. π1(EJe2Kρ[x 7→ v])(U)

f = λu. let v = π2(EJe1Kρ)(ue) in b(v, uo)c
g = λ(v, w). π2(EJe2Kρ[x 7→ v])(w)

The operations ⊕⊥ correspond to strict primitives on reals. The denotation of
return e is a point mass valuation centered at EJeKρ, which corresponds to a
sampler that ignores the input bit-randomness and returns EJeKρ. The meaning
of x ← e1 ; e2 also gives a valuation and a sampler. In the former, we reweigh
EJe2Kρ[x 7→ ·] according to the valuation EJe1Kρ. In the sampling view, we first
split the input bit-randomness u into two bit streams ue and uo, corresponding
to the bits of u with even indices and the bits of u with odd indices respectively.
We run the sampler denoted by e1 on the input ue to produce a sample v, and
pass the unused bit-randomness uo. Then, we run the sampler π2(EJe2Kρ[x 7→ v])
with x bound to v on the bit-randomness uo.



Properties We need to check that the semantics we gave above is well-defined,
particularly for the cases corresponding to manipulating distributions. Recall
that the interpretation of Samp α is a pair of a valuation ν and a sampling
function s, such that the push-forward of s is equivalent to ν. Thus, for the
meaning of return e, we will need to argue that a sampler that ignores its
input randomness is equivalent to a point mass valuation. For the meaning of
x ← e1 ; e2, we will need to relate a composition of sampling functions to a
reweighing by integration. The first sampling function passes input bits that are
unconsumed to the second sampling function. We can state this formally below.

Lemma 1. (Push) Let X and Y be computable metric spaces.

1. Let f ∈ 2ω ⇒ (S ◦L(X))⊥ be a constant function, i.e., f(u) = bdc for every
u. Then, psh(f) = λU. 1U (d)

2. Let f ∈ 2ω ⇒ (S ◦L(X)×2ω)⊥ such that psh(f) = psh((lift◦π1)† ◦f)⊗µiid

(independence) and g ∈ S ◦ L(X)× 2ω ⇒ (S ◦ L(Y ))⊥. Then,

psh(g† ◦ f) = λU.

∫
λv. psh(g(v))(U) d(psh((lift ◦ π1)† ◦ f))

Consequently, the expression denotation function is well-defined.

Lemma 2. (Denotation well-defined) If Γ ` e : α, then EJeKρ ∈ VJαK.

We now restrict the interpretation of types to consider Type-2 computabil-
ity. Importantly, we can implement the restriction in a standard programming
language. Below, we give the interpretation of types VcJ·K restricted to Type-2
computable objects.

VcJRealK , {r ∈ VJRealK | r is Type-2 computable or r = ⊥}
VcJSamp αK , {(ν, s) ∈ VJSamp αK | for Type-2 computable u,

s(u) is Type-2 computable on dom(s) or s(u) = ⊥}

We restrict the reals to the computable reals by choosing the Type-2 computable
subset. The distributions are restricted to those sampling functions 2ω ⇒ (S ◦
L(VM JαK))⊥ that are Type-2 computable. As a reminder, a Type-2 computable
function f : 2ω → L(VM JαK) transforms finite prefixes of an input in 2ω into a
fast Cauchy sequence in VM JαK. Hence, there are (continuous CPO) sampling
functions in the unrestricted denotational semantics that do not satisfy this
property.

The expression denotation function is still well-defined, assuming that our
global environment only contains Type-2 computable elements and functions.
Informally, it follows because Type-2 computable functions are closed under
composition. For instance, the composition of Type-2 computable sampling al-
gorithms will be Type-2 computable.

Lemma 3. (Denotation well-defined) If Γ ` e : α, then EJeKρ ∈ VcJαK.



module A (approx , anth , CMetrizable , enum , metric) where

approx :: (Nat -> a) -> A a -- fast Cauchy sequence

anth :: A a -> Nat -> a

class CMetrizable a where

enum :: [a] -- countable , dense subset

metric :: a -> a -> A Rat -- computable metric

newtype A a = A { getA :: Nat -> a }

module CompDistLib (sampler) where

type RandBits = Nat -> Bool

type Samp = State RandBits

sampler :: (CMetrizable a) => (RandBits -> a) -> Samp a

Fig. 1. Library interface

In the next section, we will implement the sampling semantics as a Haskell
library.

We end by giving familiar laws justified by the denotational semantics. For
example, the type Samp α satisfies the monad laws and commutativity, where ≡
means equivalence in distribution. This follows the monadic structure of standard
probability as others have observed (e.g., [8]). For commutativity, we require that
x is not free in e2 and that y is not free in e1.

x′ ← return x ; f x′ ≡ f x (left identity)

x← e ; return x ≡ e (right identity)

x← e ; y ← f x ; g y ≡ y ← (x← e ; f x) ; g y (bind associativity)

x← e1 ; y ← e2 ; f x y ≡ y ← e2 ; x← e1 ; f x y (commutativity)

These laws have an operational sampling interpretation. For example, the as-
sociativity of bind says that an algorithm can re-associate the sampling steps,
provided that there are no dependencies, and still obtain samples from the same
distribution. Commutativity says that if two distributions are independent, then
a sampler can sample them in either order. Of course, re-associating or com-
muting produces samplers that consume input randomness differently, but the
distribution induced by the samplers will be equivalent.

4.2 Computable distributions as a library

We now present a Haskell library (Fig. 1) for expressing samplers that imple-
ments the ideas from the previous section. In particular, we will show that we
can implement the sampling semantics in Haskell without assuming reals or
primitive continuous distributions.

The module A contains operations for computable metric spaces. First, the
type A α models an element of a computable metric space. It can be read as an



approximation by a sequence of values of type α. For example, a computable
real can be given the type CReal , A Rat, meaning it is a sequence of rationals
that converges to a real. We can form values of type A α using approx, which
requires us to check that the function we are coercing describes a fast Cauchy
sequence, and project out approximations using anth.

To form A α, values of type α should support the operations required of a
computable metric space. We can indicate the required operations using Haskell’s
type-class mechanism.

class CMetrizable a where

enum :: [a]

metric :: a -> a -> A Rat

When we implement an instance of CMetrizable, we should check that the
implementation of enum enumerates a dense subset and metric computes a
metric as a computable metric space requires (see Sec. 3). Below, we give an
instance of A Rat for computable reals.

instance CMetrizable Rat where

enum = 0 : [ toRational m / 2^n

| n <- [1..]

, m <- [-2^n * n..2^n * n]

, odd m || abs m > 2^n * (n-1) ]

metric x y = A (\_ -> abs (x - y))

This instance enumerates the dyadic rationals (powers of 2), which are a dense
subset of the reals. Note that there are many other choices here for the dense
enumeration.4 In this instance, we can actually compute the metric as a dyadic
rational, whereas a computable metric requires the weaker condition that we can
compute the metric as a computable real.

Next, we can use the module A to implement computable operations on com-
monly used types. This reifies the computable primitives ⊕ from the core lan-
guage as a library function. For example, a library for computable reals will
contain the CMetrizable instance implementation above and other computable
functions. However, some operations are not realizable (e.g., equality) and so
this module does not contain all operations one may want to perform on reals.

module RealLib (CReal , pi, ...) where

import A

import CompDistLib

type CReal = A Rat

instance CMetrizable Rat where ...

pi :: A Rat

(+) :: A Rat -> A Rat -> A Rat

exp :: A Rat -> A Rat

...

4 Algorithms that operate on computable metric spaces compute by enumeration so
the algorithm is sensitive to the choice of enumeration.



Next, we give constructs for expressing distributions described in the module
CompDistLib. The type of sampling algorithms Samp α is an instance of the state
monad.

type RandBits = Nat -> Bool

type Samp = State RandBits

The threaded state is an infinite bit-stream of randomness, where each bit is i.i.d.
according to a Bernoulli distribution (i.e., fair coin flip). An algorithm consumes
this bit-stream to generate samples.

By reusing the state monad, we automatically obtain monadic bind and re-
turn from the Haskell standard library. Bind corresponds to sampling, where
the sampling monad Samp α threads the bit-stream of randomness. Return cor-
responds to a deterministic computation because the computation ignores the
bit-stream. Instead of building in primitive distributions, we provide an intro-
duction form sampler that coerces an arbitrary sampling function, constrained
to types α that have a CMetrizable instance. We should call sampler only on
sampling functions realizing Type-2 computable sampling algorithms.

sampler :: (CMetrizable a) => (RandBits -> a) -> Samp a

sampler f = State (\u -> let (u_e , u_o) = split u in

return (f u_e , u_o))

where split u = (\n -> u (2 * n), \n -> u (2 * n + 1))

The function split splits an input bit-stream of randomness into two, non-
overlapping bit-streams of randomness and will be used to ensure that primitive
distributions built from sampler have access to fresh bit-streams of randomness.
Thus, sampler first splits the input randomness u. Then, it runs the input sam-
pling function f on u e, and threads the unused portion u o through for the rest
of the computation. At this point, we are done describing the implementation of
the semantics. We end with a few examples.

First, note that we can express distributions that are not (strictly) Type-2
computable—recall from the definition that computable distributions are nor-
malized (see Sec. 3). Consider the program below, where bot = bot (i.e., bot is a
computation that does not terminate) and bernoulli is a Bernoulli distribution:

maybeLoop :: Samp Bool

maybeLoop = do

b <- bernoulli

if b then return bot else bernoulli

This program diverges 1/2 the time and returns a fair coin flip the other 1/2
according to Haskell semantics. Hence, it does not generate a sample with prob-
ability 1 so it cannot be a Type-2 computable distribution. Later when we add
conditioning to λCD as a library function implementing a Type-2 conditioning
algorithm, we will not give semantics to conditioning on un-normalized distri-
butions because the Type-2 algorithm assumes the distribution is normalized.
Distributions such as maybeLoop that fail to generate a sample with positive
probability are not useful in the context of Bayesian inference. Hence, we are
fine not giving semantics to conditioning on these distributions.



Next, we show how to use the library to encode continuous distributions.
To start, we fill in the sketch of the standard Uniform distribution from before
using sampler. As a reminder, we need to convert a random bit-stream into a
sequence of (dyadic) rational approximations.

std_uni :: Samp CReal

std_uni = sampler (\u -> A (\n -> bisect (n+1) u 0 1 0))

where

bisect n u (l :: Rat) (r :: Rat) m =

if m < n

then (if u m

then bisect n u l (midpt l r) (m+1)

else bisect n u (midpt l r) r (m+1))

else midpt l r

midpt l r = l + (r - l) / 2

The function bisect repeatedly bisects an interval specified by (l, r). By con-
struction, the sampler produces a sequence of dyadic rationals. We can see that
this sampling function is uniformly distributed because it inverts the binary ex-
pansion specified by the uniformly distributed input bit-stream. Once we have
the Uniform distribution, we can encode other primitive distributions (e.g., Nor-
mal, Exponential, and etc.) as transformations of the Uniform as in standard
statistics using return and bind.

For example, we give an encoding of the standard Normal distribution using
the Marsaglia polar transformation, which diverges with probability 0:

std_normal :: Samp CReal

std_normal = do

u1 <- uniform (-1) 1

u2 <- uniform (-1) 1

s <- return (u1 * u1 + u2 * u2)

if s < 1

then return (u1 * sqrt (- log s / s))

else std_normal

The distribution uniform (−1) 1 is the Uniform distribution on the interval
(−1, 1) and can be encoded by shifting and scaling a draw from std uniform.
We can check that this distribution is samplable. First, we check that the al-
gorithm produces a sample with probability 1 by showing that both s = 1 (by
absolute continuity) and divergence (by Borel-Cantelli) occur with probability 0.
Note that the operation < semi-decides both < and >, where we are guaranteed
with probability 1 that equality does not hold. Next, the algorithm is measure-
preserving because uniform (−1) 1 is a samplable distribution and compositions
of computable functions preserve measure. Hence, we can conclude that this dis-
tribution is samplable.

5 Conditioning

Conditioning is the core operation of Bayesian inference. As we alluded to earlier,
conditioning is not computable in general [1]. We could use a more abstract



definition of conditioning used in measure theory, but it would be undesirable
if the semantics of conditioning for a probabilistic programming language was
not computable given that one of its goals is to automate inference. Instead, we
take a library approach, which requires the client to provide an implementation
of a conditioning algorithm and limits us to situations where conditioning is
computable. Hence, the semantics of our core language remains unchanged.

5.1 Preliminaries

We begin with background on conditioning in the context of Bayesian inference
before moving to conditioning in the measure-theoretic and computable settings.
A Bayesian model puts a distribution on the product space Θ×D, where Θ is the
space of parameters and D is the space of observations. Observing a particular
value d ∈ D restricts the domain of the distribution to that subspace, resulting
in a distribution on parameters given the data d. More formally, the objective
of Bayesian inference is to compute the posterior distribution p(θ | d) (function
of θ for fixed d) given a joint distribution p(d, θ) and observed data d ∈ D.
The notation p(·) refers to the density of a distribution, but it is common (in
statistics) to refer to p(·) as a distribution as we have done above. The density
of a distribution µ with respect to a distribution ν is an integrable function f
such that µ(A) =

∫
A
fdν for every measurable A. Thus, a density along with

the underlying measure ν (often Lebesgue measure) determines a measure. The
joint and posterior are related with Bayes’ rule:

p(θ | d) =
p(d, θ)∫
p(d, θ)dθ

∝ p(d | θ)p(θ) ,

where p(θ) is called the prior distribution and p(d | θ) is called the likelihood.
The posterior distribution p(θ | d) is a conditional distribution.

Conditioning can be defined in more abstract settings when we do not have
densities. First, we need to introduce additional measure-theoretic definitions. A
tuple (Ω,F , µ) is called a probability space, where (Ω,F) is a measurable space
and µ is a measure. We will omit the underlying σ-algebra and measure when
they are unambiguous from context. A function f : Ω1 → Ω2 is measurable
if f−1(B) is measurable for measurable B. In the case of metric spaces, the
measurable sets are generated by the open balls so measurable functions are a
superset of the continuous functions. A random variable that takes on values in
a probability space S is a measurable function X : Ω → S. The distribution of
a random variable X, written P[X ∈ ·], is defined as the push-forward of the
underlying measure, i.e., P[X ∈ A] = µ(X−1(A)) for all measurable A. We write
X ∼ µ to indicate that the random variable X is distributed according to µ.

Now, we can give definitions for conditioning in the measure-theoretic set-
ting. We will not give the most general definition of conditioning as conditional
expectation, choosing to restrict the scope to the case that also applies in the
computable setting [1]. In the following, let X and Y be random variables in com-
putable metric spaces S and T respectively. In addition, let BT be the (Borel)



module Conditioning where

import A

import CompDistLib

import RealLib

newtype BndDens a b =

BndDens { getDens :: (A a -> A b -> CReal , Rat) }

-- Requires comp. dist. and bounded conditional density

obs_dens :: forall u v y.

(CMetrizable u, CMetrizable v, CMetrizable y) =>

Samp (A (u, v)) -> BndDens u y -> A y -> Samp (A (u, v))

Fig. 2. An interface for conditioning.

σ-algebra on T and let PX be the distribution of X. A measurable function
P[Y ∈ B | X] for B measurable is a version of the conditional probability of
Y ∈ B given X when

P(X ∈ A, Y ∈ B) =

∫
A

P[Y ∈ B | X]dPX

for all measurable A. A probability kernel is a function κ : S × BT → [0, 1] such
that κ(s, ·) is a Borel measure on T for every s ∈ S, and κ(·, B) is measurable
for every measurable B. A regular conditional probability is then a probability
kernel κ such that P(X ∈ A, Y ∈ B) =

∫
κ(x,B)PX(dx), where A and B are

measurable.
These definitions have computable versions.

Definition 2. (Computable probability kernel [1, Def. 4.2]) Let S and T be
computable metric spaces, and BT be the σ-algebra on T . A probability kernel
κ : S × BT → [0, 1] is computable if κ(·, A) is a lower semi-computable function
for every r.e. open A ∈ σ(BT ).

Definition 3. (Computable conditional distribution [1, Def. 4.7]) Let X and Y
be random variables in computable metric spaces S and T . Let κ be a version
of P[Y | X] (notation for P[Y ∈ · | X]). Then P[Y | X] is computable if κ is
computable on a PX measure-one subset.

Thus, a non-computable conditional distribution is one for which every version
is non-computable.

5.2 Conditioning

Now, we add conditioning as a library to λCD (Fig. 2). λCD provides only a
restricted conditioning operation obs dens, which requires a conditional den-
sity. We will see that the computability of obs dens corresponds to an effective



version of Bayes’ rule, which is central to Bayesian inference, and hence, widely
applicable in practice. We have given only one conditioning primitive here, but
it is possible to identify other situations where conditioning is computable and
add those to the conditioning library. For example, conditioning on positive
probability events is computable (see [7, Prop. 3.1.2]).

The library provides the conditioning operation obs dens, which enables
us to condition on continuous-valued data when a bounded and computable
conditional density is available.

Proposition 2. [1, Cor. 8.8] Let U , V and Y be computable random variables,
where Y is independent of V given U . Let pY | U (y | u) be a conditional density
of Y given U that is bounded and computable. Then the conditional distribution
P[(U, V ) | Y ] is computable.

The bounded and computable conditional density enables the following integral
to be computed, which is in essence Bayes’ rule. A version of the conditional
distribution P((U, V ) | Y ) is

κ(U,V ) | Y (y,B) =

∫
B
pY | U (y | u)dP(U,V )∫
pY | U (y | u)dP(U,V )

where B is a Borel set in the space associated with U × V .
Another interpretation of the restricted situation is that our observations

have been corrupted by independent smooth noise [1, Cor. 8.9]. To see this, let
U be the random variable corresponding to our ideal model of how the data was
generated, V be the random variable corresponding to the model parameters, and
Y be the random variable corresponding to the corrupted data we observe. Notice
that the model (U, V ) is not required to have a density and can be an arbitrary
computable distribution. Indeed, probabilistic programming systems proposed
by the machine learning community impose a similar restriction (e.g., [9, 35]).

Now, we describe obs dens, starting with its type signature. Let the type
BndDens α β represent a bounded computable density:

newtype BndDens a b =

BndDens { getDens :: (A a -> A b -> CReal , Rat) }

Conditioning thus takes a samplable distribution, a bounded computable den-
sity describing how observations have been corrupted, and returns a samplable
distribution representing the conditional. In the context of Bayesian inference, it
does not make sense to condition distributions such as maybeLoop that diverge
with positive probability. Hence, we do not give semantics to conditioning on
those distributions.

Now, we give a sketch of its implementation. In essence, it is a λCD program
that implements the proof that conditioning is computable in this restricted
setting. This is possible because results in computability theory have computable
realizers.5

5 That is, we implement the Type-2 machine code as a Haskell program. The im-
plementation relies on Haskell’s imprecise exceptions mechanism [22] to express



obs_dens :: forall u v y.

(CMetrizable u, CMetrizable v, CMetrizable y) =>

Samp (A (u, v)) -> BndDens u y -> A y -> Samp (A (u, v))

obs_dens dist (BndDens (dens , bnd)) d =

let f :: A (u, v) -> CReal = \x -> dens (afst x) d

mu :: Prob (u, v) = stc dist

nu :: Prob (u, v) = \bs ->

let num = integrate_bnd_dom mu f bnd bs

denom = integrate_bnd mu f bnd

in map fst (cauchy_to_lu (num / denom ))

in

cts nu

The parameter dist corresponds to the joint distribution of the model (both
model parameters and likelihood), dens corresponds to a bounded conditional
density describing how observation of data has been corrupted by independent
noise, and d is the observed data. Next, we informally describe the undefined
functions in the sketch. The functions stc and cts witness the computable
isomorphism between samplable and computable distributions. The functions
integrate bnd dom and integrate bnd compute an integral (see [12, Prop.
4.3.1]), and correspond to an effective Lebesgue integral. cauchy to lu converts
a Cauchy description of a computable real into an enumeration of lower and
upper bounds.

Because obs dens works with conditional densities, we do not need to worry
about the Borel paradox. The Borel paradox shows that we can obtain dif-
ferent conditional distributions by conditioning on equivalent probability zero
events [26]. In addition, note that it is not possible to create a boolean value
that distinguishes two probability zero events in λCD. For instance, the oper-
ator == implementing equality on reals returns false if two reals are provably
not-equal and diverges otherwise because equality is not decidable.

Now, we give an encoding in λCD of an example by Ackerman et al. [1] that
shows that conditioning is not always computable. Similar to other results in
computability theory, the example demonstrates that an algorithm computing
the conditional distribution would also solve the Halting problem.

non_comp :: Samp (Nat , CReal)

non_comp = do

n <- geometric (1/2)

c <- bernoulli (1/3)

u <- uniform 0 1

v <- uniform 0 1

x <- return (approx (\k -> dk k (tm_halts_within_k n k)))

return (n, x)

where dk k m | m > k = anth v k

| m = k = c

| m < k = anth u (k - m - 1)

the modulus of continuity of a computable function (see Andrej Bauer’s blog
http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous).



The Uniform distribution uniform generates approximations via dyadic ratio-
nals. The distributions geometric and bernoulli correspond to Geometric and
Bernoulli distributions. The function tm halts within k accepts a natural n
specifying the n-th Turing machine and a natural k describing the number of
steps to run the machine for, and returns the number of steps the n-th Turing
machine halts in or k if it cannot tell. Upon inspection, we see the function dk

produces the binary expansion (as a dyadic rational) of a computable real, using
tm halts within k to select different bits of the binary expansion of u or v, or
the bit c. Thus, it is computable. However, it is not possible to compute the
conditional distribution P (N | X), where the random variable N corresponds to
the program variable n and X to x, because we would compute the complement
of the Halting set.

6 Examples

In this section, we give additional examples of distributions in λCD, including
a non-parametric prior (a distribution on a countable number of parameters)
and a singular distribution (neither discrete nor continuous). This highlights the
expressiveness of λCD and demonstrates how to apply the reasoning principles
from before.
Geometric distribution Consider the encoding of a Geometric distribution
with bias 1/2, which returns the number of Bernoulli trials until a success.

geometric :: SampT Nat

geometric = do

b <- bernoulli (1/2)

if b

then return 1

else do

n <- geometric

return (n + 1)

Our denotational view shows that the code encodes the Geometric distribution,
where µB is a Bernoulli distribution and µn corresponds to n un-foldings of
geometric. To see this, we can proceed by induction on n and use the induction
hypothesis that µn is the measure {0} 7→ 0, {1} 7→ (1/2), . . . , {n} 7→ (1/2)n.

EJgeometricKρ = λU. sup
n

∫
λv.

{
1U (1) if v = t∫
λw. 1U (w + 1)dµn otherwise

dµB

= λU. sup
n

(1U (1)
1

2
+

∞∑
w=0

1U (w + 1)µn({w}))

Non-parametric prior We give two different encodings of the Dirichlet pro-
cess, a prior distribution used in mixture models where the number of mixtures
is unknown (e.g., [19]). The Dirichlet process DP(α,G0) is a distribution on
distributions—a draw produces a discrete distribution with support determined



by G0, the based distribution, and mass according to α, the concentration pa-
rameter. The Dirichlet process can be represented in multiple ways, where each
representation illuminates different properties. One representation is called the
Blackwell-MacQueen urn scheme (see [19]), which describes how to sample from
the distribution resulting from a draw of the Dirichlet process. Thus, we can
imagine it describing the following process:

G ∼ DP(α,G0)

θn | G ∼ G for n ∈ N .

The conditional distribution of θn is

θn | θ1:n−1 ∼
α

α+ n− 1
G0 +

1

α+ n− 1

n−1∑
j=1

1θj for n ∈ N ,

which shows that the base distribution G0 determines the support and α deter-
mines how often we select a new point from G0 to put mass on. We can encode
the conditional distribution in λCD.

urn ’ :: CReal -> Samp a -> [a] -> Samp a

urn ’ alpha g0 prev =

let l = length prev

n :: Integer = (toInteger l) + 1

w = 1 / (fromInteger n - 1 + alpha)

ws = replicate l w ++ [alpha]

d = disc_id ws

in do

c <- d

if c == n - 1

then g0

else return (prev !! (fromInteger c))

We can put our reasoning principles to work to argue that urn’ encodes the
conditional distributions. First, we can use a distributional view of the monadic
block of urn’ under an environment ρ, where µ = EJdKρ.

EJc← d ; if c == n-1 then g0 else return (prev !! c)Kρ = λU.∫
λv.π1 ◦

{
EJg0Kρ[c 7→ v](U) if EJc == n-1Kρ[c 7→ v]

EJreturn (prev !! c)Kρ[c 7→ v](U) otherwise
dµ

Next, substituting away the let bindings (justified by Haskell semantics) implies
that EJdKρ is the discrete distribution

0 7→ 1

α+ n− 1
, . . . , n− 2 7→ 1

α+ n− 1
, n− 1 7→ α

α+ n− 1
.



This reduces the previous integral to the summation

λU.

n−2∑
j=0

1

α+ n− 1
EJreturn (prev !! c)Kρ[c 7→ j](U)

+
α

α+ n− 1
EJg0Kρ[c 7→ n− 1](U) ,

where EJg0Kρ is the base distribution G0. Rewriting this in statistical notation
gives the desired result

EJurn’ alpha g0 prevKρ ∼ α

α+ n− 1
G0 +

∑n−1
j=1

α+ n− 1
1prevj .

Next, we can describe the entire infinite sequence using lazy monadic lists

data MList m a = Nil | Cons a (m (MList m a))

and analogoulsy define common operations expected of lists such as iterate,
map, and tail.

urn :: forall a. CReal -> Samp a -> Samp (MList a)

urn alpha g0 =

let f :: ((a, [a]) -> Samp a) = return . fst)

g (_, acc) = do

x <- urn ’ alpha g0 acc

return (x, acc ++ [x])

in do

x0 <- g0

xs <- ML.map f (ML.iterate g (return (x0, [])))

ML.tail xs

Expressing the resulting conditional distribution for each n gives

EJurn alpha g0Kρn | EJurn alpha g0Kρ1:n−1 ∼

α

α+ n− 1
G0 +

∑n−1
j=1

α+ n− 1
1psh(EJurn alpha g0Kρ)j .

Alternatively, there is a constructive representation known as the stick-break-
ing construction (see [19]) that gives the structure of the discrete distribution
directly. We describe a process that gives G ∼ DP(α,G0). First, let random
variables βk ∼ Beta(1, α) be distributed according to the Beta distribution for

k ∈ N. Next, define πk = βk
∏k−1
i=1 (1 − βi) for k ∈ N. Let Xk ∼ G0 for k ∈ N.

The result G is
∑∞
k=1 πk1Xk(·). We can encode the stick-breaking construction in

λCD, where ML.@: is synonymously ML.Cons and ML.!!! indexes a lazy monadic
list. The function mdisc id samples an index according to an input lazy monad
list specifying probabilities.

sticks :: CReal -> Samp a -> Samp a

sticks alpha g0 = do



xs <- ML.repeat g0

pis <- weights 1

c <- mdisc_id pis

xs ML.!!! fromInteger c

where

weights :: CReal -> Samp (MList CReal)

weights left = do

v <- beta 1 alpha

return ((v * left) ML.@: (weights (left * (1 - v))))

We can follow a similar pattern to reason about the urn representation. For
instance, we can analyze this function compositionally as before by reasoning
that c ← mdisc id pis xs ; ML.!!! fromInteger c selects a sample from xs

according to the weights pis. Finally, we can combine this with showing that
weights generates the weights πk.

The encodings show that we can use probabilistic and standard program
reasoning principles at the same time. Because we checked that each program
encoded their respective representation, we also obtain that sampling sticks an
infinite number of times is equivalent to urn because both encode the Dirichlet
process. This might seem strange because the urn encoding has more sequential
dependencides than the stick-breaking representation. The equivalence relies on
a probabilistic concept called exchangeability, which asserts the existence of a
conditionally independent representation if the distribution is invariant under all
finite permutations. Exchangeability has been studied in the Type-2 setting [5]
and it would be interesting to see if we can lift those results into λCD.

Singular distribution Next, we give an encoding of the Cantor distribution.
The Cantor distribution is singular so it is not a mixture of a discrete component
and a component with a density. The distribution can be defined recursively. It
starts by trisecting the unit interval, and placing half the mass on the leftmost
interval and the other half on the rightmost interval, leaving no mass for the
middle, continuing in the same manner with each remaining interval that has
positive probability. We can encode the Cantor distribution in λCD be directly
transforming a random bit-stream into a sequence of approximations.

cantor :: Samp CReal

cantor = sampler (\u -> approx (\n -> go u 0 1 0 n))

where go u (left :: Rat) (right :: Rat) n m =

let pow = 3 ^^ (-n) in

if (n < m)

then (if u n

then go u left (left + pow) (n + 1) m

else go u (right - pow) right (n + 1) m)

else right - (1 / 2) * pow

The sampling algorithm keeps track of which interval it is currently in specified
by left and right. If the current bit is 1, we trisect the left interval. Otherwise,
we trisect the rightmost interval. Crucially, the number of trisections is bounded
by the precision we would like to generate the sample to. We could express



the Cantor distribution in a measure-theoretic language with recursion, but we
would need to trisect infinitely to express the distribution exactly.

7 Related Work

The semantics of probabilistic programs have been studied outside the context
of Bayesian inference, in particular, to look at non-determinism and probabilis-
tic algorithms. For instance, Kozen [15] gives both a sampling semantics and
denotational semantics to a first-order imperative language. Instead of CPO
constructions, the denotational semantics uses constructs from analysis, and re-
covers order-theoretic structure to support recursion. In the functional setting,
researchers have studied probabilistic powerdomains, which put distributions on
CPO’s so that the space of distributions themselves forms a CPO. For example,
Saheb [27] introduces the probabilistic powerdomain on CPO’s by considering
probability measures. Jones [13] considers powerdomains of valuations on CPO’s
instead and shows that this results in CPO’s that have more desirable properties
reminiscent of standard domains (e.g., ω-algebraic). The work on powerdomains
typically does not consider continuous distributions (we obtain the topology
from a computable metric space as opposed to the Scott-topology of a CPO) or
Bayesian inference.

Semantics for probabilistic programs have also been studied with machine
learning applications in mind. Ramsey et al. give denotational semantics to a
higher-order language without recursion extended with discrete distributions us-
ing the probability monad, and shows how to efficiently implement probabilistic
queries [25]. Borgström et al. [3] uses measure theory to give denotational se-
mantics to a first-order language without recursion using measure transformers.
The main focus of the work is to ensure that the semantics of conditioning
on events of 0 probability is well-defined. Toronto et al. [29] propose another
measure-theoretic approach for a first-order language with recursion by interpret-
ing probabilistic programs as pre-image computations of measurable functions
to support conditioning. They do not use standard constructs from denotational
semantics, and thus, do not handle recursion with a fixed-point construction.
Instead, their target is a variant of lambda calculus extended with set-theoretic
operations (λZFC). Park et al. [21] give an operational semantics to an ML-like
language in terms of sampling functions, but uses an idealized abstract machine.
Hence, they also use the observation that a continuous distribution is character-
ized by a sampling procedure, but do not explore connections to a denotational
approach nor the (faithful) realizability of their operational semantics.

Probabilistic languages have also been proposed to study inference, and typi-
cally have been given operational semantics. Some languages restrict to express-
ing well-established abstractions, such as factor graphs and Bayesian networks,
in order to automate standard inference algorithms. In this restricted setting,
they are given semantics in terms of the abstractions they express. For instance,
the Bugs system [16] provides a language for users to specify Bayesian networks
and implements Gibbs sampling, a Markov Chain Monte Carlo sampling algo-



rithm used in practice that reduces the problem of sampling from a multivariate
conditional distribution into sampling from multiple univariate conditional dis-
tributions. Several other probabilistic programming languages similar to Bugs
have been developed for expressing factor graphs (e.g., [17, 18, 10]) and directed
models (e.g., [11, 30]), and automate inference using standard algorithms, in-
cluding message passing and HMC sampling.

Other researchers extend Turing-complete languages with the ability to sam-
ple from primitive distributions (e.g., [14, 24, 9, 33, 23, 35, 20]) and have been pro-
posed to study inference in this richer setting. These languages have operational
semantics given in terms of an inference method implemented in the host lan-
guage. Examples include Stochastic Lisp [14] and Ibal [24] which only have dis-
crete distributions. Others add continuous distributions, including Church [9]
which embeds in Scheme and Fiagro [23] which embeds in Scala. The Church
language performs inference by sampling program traces. Other languages have
built upon this, including Probabilistic Matlab [33], Probabilistic C [35], and
R2 [20], each proposing a different method to improve the efficiency of sampling
program traces.

8 Discussion

In summary, we show that we can give sampling semantics to a high-level prob-
abilistic language for Bayesian inference that corresponds to a natural denota-
tional view. Our approach, by acknowledging the limits of computability, gives
a semantics that corresponds to the intuition of probabilistic programs encod-
ing generative models as samplers. In particular, Type-2 computability makes
sense (i.e., algorithmically) of sampling from continuous distributions as well as
the difficulty of supporting a generic conditioning primitive. Moreover, we have
shown that many ideas such as the ones in the probabilistic powerdomains can
also be applied to give semantics to modern probabilistic languages designed for
Bayesian inference. We end with a few directions for future work.

First, as we mentioned previously, algorithms that operate on computable dis-
tributions (and reals) are not necessarily efficient. In many practical situations,
it is not necessary to compute to arbitrary precision as Type-2 computability
demands, but enough precision. It would be interesting to see if we can effi-
ciently implement an approximate semantics in this relaxed setting. Second, our
approach has not been designed with inference in mind. The language λCD is
perhaps too expressive—we can express distributions that are not meaningful for
inference (e.g., maybeLoop) and singular distributions that have limited appli-
cations (e.g., Cantor distribution). It would be interesting to explore restricted
language designs where we have guaranteed efficient inference.
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28. Matthias Schröder. Admissible representations for probability measures. Mathe-
matical Logic Quarterly, 53(4-5):431–445, 2007.

29. Neil Toronto, Jay McCarthy, and David Van Horn. Running probabilistic programs
backwards. In Programming Languages and Systems, pages 53–79. Springer, 2015.

30. Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C. Pocock, Stephen
Green, and Guy L. Steele. Augur: Data-Parallel Probabilistic Modeling. In Ad-
vances in Neural Information Processing Systems, pages 2600–2608, 2014.

31. Klaus Weihrauch. Computability on the probability measures on the Borel sets of
the unit interval. Theoretical Computer Science, 219(1):421–437, 1999.

32. Klaus Weihrauch. Computable Analysis: An Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2000.

33. D. Wingate, A. Stuhlmller, and N. D. Goodman. Lightweight Implementations
of Probabilistic Programming Languages Via Transformational Compilation. In
Artificial Intelligence and Statistics, AISTATS,’11, 2011.

34. Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-
tion. MIT Press, Cambridge, MA, USA, 1993.

35. Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach
to probabilistic programming inference. In Proceedings of the 17th International
conference on Artificial Intelligence and Statistics, pages 2–46, 2014.


