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Abstract

The problem of probabilistic modeling and inference, at a high-level, can be viewed as con-

structing a (model, query, inference) tuple, where an inference algorithm implements a query

on a model. Notably, the derivation of inference algorithms can be a difficult and error-prone

task. Hence, researchers have explored how ideas from probabilistic programming can be ap-

plied. In the context of constructing these tuples, probabilistic programming can be seen as

taking a language-based approach to probabilistic modeling and inference. For instance, by

using (1) appropriate languages for expressing models and queries and (2) devising inference

techniques that operate on encodings of models (and queries) as program expressions, the task

of inference can be automated. Notably, these modeling languages will typically provide con-

tinuous distributions. Hence, there is no direct connection with traditional, discrete notions

of computation. Nevertheless, there is an intuitive understanding of such languages given in

terms of sampling.

In this dissertation, I investigate aspects of probabilistic programming languages (PPLs) in

two parts. In the first part, I show how (Type-2) computable distributions can be used to give

both distributional and (algorithmic) sampling semantics to a high-level, PCF-like language

extended with continuous distributions. One motivation for using computable distributions, as

opposed to more generally measures, is so that we can think of a Turing-complete probabilis-

tic modeling language as expressing computable distributions. In the second part, I describe a
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compiler that generates Markov Chain Monte Carlo (MCMC) inference sampling algorithms

for a language called AugurV2, which expresses a class of fixed-structure, parametric models.

To manage the large design space of MCMC algorithms and implementations, I propose a se-

quence of intermediate languages that enable a compiler to gradually and successively refine

a declarative description of a probabilistic model and a query for posterior samples into an

executable inference algorithm. The compilation strategy produces composable MCMC algo-

rithms for execution on the CPU and GPU. I will also show how to use the semantics based

on computable distributions to justify aspects of AugurV2’s design and implementation.
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1
Introduction

Probabilistic models have applications in a wide range of fields, including in biology [28] and

robotics [109]. One reason for their success is that probabilistic models can express both mod-

eling assumptions (e.g., causality or locality) and uncertainty (e.g., noise) uniformly in the

language of probability and statistics. A probabilistic model induces a probability distribu-

tion, which we can query for quantities of interest. For example, given a distribution over the

values a collection of variables can take on, we might be interested in determining the most

likely configuration of the variables involved. To answer such a query, practitioners implement
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an inference algorithm. Inference is analytically intractable in general. Consequently, prac-

titioners devote a significant amount of time to developing and implementing approximate

inference algorithms to answer a query for a given model.

More generally, we can think of the problem of probabilistic modeling and inference as

constructing a (model, query, inference) tuple, where the inference algorithm implements a

query on a model. To simplify this task, researchers have explored how ideas from probabilistic

programming can be applied. In the context of constructing these tuples, probabilistic pro-

gramming can be seen as taking a language-based approach to probabilistic modeling and in-

ference. For instance, by using (1) appropriate languages for expressing models and queries

and (2) devising inference techniques that operate on encodings of models (and queries) as

program expressions, the task of inference can be automated. Due to the promise of this ap-

proach, many probabilistic programming languages (PPLs) have been proposed in the litera-

ture to explore the various points of the design space [108, 73, 42, 119, 37, 120, 112, 69, 16].

In this dissertation, I study aspects of PPLs in two parts. In the first part, I investigate

the semantics of a probabilistic modeling language extended with continuous distributions. In

particular, I show how (Type-2) computable distributions can be used to give both distribu-

tional and (algorithmic) sampling semantics to a PCF-like language extended with a proba-

bility monad called λCD. One reason for using computable distributions, as opposed to more

generally measures, is so that we can interpret a Turing-complete probabilistic modeling lan-

guage as expressing computable distributions. Hence, we can ground our study of these lan-

guages on traditional notions of computation. In the second part, I investigate the compilation

of a probabilistic modeling language and a query for posterior samples into Markov Chain

Monte Carlo (MCMC) inference algorithms. In particular, I describe a system called AugurV2
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whose domain-specific modeling language can be used to express fixed-structure Bayesian net-

works. The AugurV2 modeling language is a restriction of λCD, and hence, shares a common

semantic foundation based on (Type-2) computable distributions. To guide the compilation

process, I propose a sequence of intermediate languages that enable a compiler to gradually

and successively refine a declarative description of a probabilistic model and a query for pos-

terior samples into an executable inference algorithm. The compiler generates composable

MCMC algorithms for execution on the CPU and GPU.

Remark (Scope). I focus exclusively on PPLs designed for expressing probabilistic genera-

tive models and for performing Bayesian inference in this dissertation. Thus, unless explic-

itly stated, I will interchangeably use the terms probabilistic generative model and probabilis-

tic model, and probabilistic inference and Bayesian inference. In general, the terms proba-

bilistic modeling and probabilistic inference can refer to non-generative probabilistic models

(e.g., Markov Random Fields) and other inference paradigms (e.g., Frequentist).

Remark (Audience). The dissertation is written for an audience that is familiar with basic

programming languages concepts. Thus, I will assume more background in programming lan-

guage theory (e.g., as in Gunter [45]) compared to background on probability and statistics.

1.1 Probabilistic Modeling and Inference

To set the stage for probabilistic programming, we begin with a short introduction to prob-

abilistic (generative) models and Bayesian inference. Throughout this section, we will use a

Gaussian Mixture Model (GMM), a model that clusters N points in D-dimensional Euclidean

space into K clusters, to illustrate some of the ideas.

Figure 1.1a provides an illustration of a 2-dimensional (2D) GMM with 3 clusters as a
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(a) An illustration of a Gaussian Mixture Model’s generative process, starting with creating cluster means
and shapes (left), and ending with colored data points (right), where the color indicates the cluster.

(b) An illustration of the results of probabilistic inference (left) to determine the distribution on cluster
centers given observed data (right) for a GMM.

Figure 1.1: A Gaussian Mixture Model (GMM) and the results of probabilistic inference.

probabilistic generative model. Intuitively, a probabilistic generative model describes a data-

generation process, where we use distributions to encode assumptions about the structure of

the process. The data-generation process begins on the left, where we sample 3 cluster loca-

tions. Then we proceed to the right, where we (1) select the cluster location (i.e., pick a color)

and then (2) sample a data point from a multivariate Gaussian distribution centered at the

appropriate cluster location.

At a high-level, probabilistic inference is concerned with the reverse process, i.e., deter-

mining the hidden or underlying structure of the data-generation process that produces the

observations. Figure 1.1b illustrates the task of determining the locations of the 3 clusters

given observed data for a GMM. On the right, we have N data points that we wish to cluster,

as indicated by the absence of color. Moving to the left, we have an example of the results of
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µk ∼ N (µ0,Σ0) for 1 ≤ k ≤ K

zn ∼ D(π1, . . . , πK) for 1 ≤ n ≤ N

yn | zn, µ ∼ N (µzn ,Σ) for 1 ≤ n ≤ N

(a) random variables

N

K

yn

µk

zn

(b) Bayesian network (plate notation)

p(µ, z, y) =

K∏
k=1

pN (µ0,Σ0)(µk)

N∏
n=1

pD(π)(zn)

N∏
n=1

pN (µzn ,Σ)(yn)

(c) densities

Figure 1.2: Three different ways of encoding a K-cluster GMM for clustering N data points in D-
dimensional Euclidean space. We write π as shorthand for referring to a vector of values (π1, . . . , πK).
The (unbound) variables µ0, Σ0, π, and Σ are known as model hyper-parameters and are constants.

probabilistic inference, which gives a distribution on the locations of the 3 clusters. In the rest

of the section, we will introduce representations of probabilistic models (Section 1.1.1) and the

difficulties of probabilistic inference (Section 1.1.2) more concretely, and then introduce the

probabilistic programming approach (Section 1.2).

1.1.1 Abstractions for Probabilistic Models

To precisely define a probabilistic model, we can use abstractions developed by statisticians

and machine learning researchers. Three standard abstractions include random variables,

probabilistic graphical models (PGMs) such as Bayesian networks, and densities. Figure 1.2

encodes a GMM using each of the three abstractions. As we will see, the representations en-

code different aspects of the same GMM.
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Random variables Random variable notation (1.2a) can be read intuitively in terms of

sampling. For example, the statement

µk ∼ N (µ0,Σ0) for 1 ≤ k ≤ K

can be read: “the random variable µk takes on a value according to the multivariate Gaussian

distribution with mean µ0 and covariance Σ0 for 1 ≤ k ≤ K.” The entire (generative) process

can be read as follows:

1. µk ∼ N (µ0,Σ0) for 1 ≤ k ≤ K: Sample the location µk ∈ RD of each cluster from a
multivariate Gaussian distribution centered at µ0 with covariance Σ0.

2. zn ∼ D(π1, . . . , πK) for 1 ≤ n ≤ N : Sample N cluster assignments zn, each from a
discrete distribution with weights π.

3. yn | zn, µ ∼ N (µzn ,Σ): Generate the observation yn as a sample from a multivariate
Gaussian distribution centered at the corresponding cluster (i.e., centered at µzn) and
shape (i.e., the covariance matrix Σ).

The probabilistic model is given by the joint distribution of all the random variables de-

fined, i.e., the distribution of the random vector (µ, z, y). As notation, we will refer to a vec-

tor of values (x1, . . . , xN ) as x. For example, we write µ to refer to the vector (µ1, . . . , µK) in

the GMM.

Bayesian network A Bayesian network (1.2b) expresses conditional independence rela-

tions, i.e., how random variables influence one another, using a directed acyclic graph (DAG).

The Bayesian network in the figure uses plate notation, which repeats the structure of the

graph the number of times indicated by the plate (lower, right-hand side). The graph repre-

sentation opens the possibility to use graph-based algorithms to perform inference. For exam-

ple, message passing is an algorithm that can be used to compute the marginal distribution of
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each node in a Bayesian network, using the graph’s edges to efficiently exchange information

between the appropriately connected nodes. The graph structure is also useful for Gibbs sam-

pling, a MCMC algorithm that leverages conditional independence relations to locally sample

variables in the graph.

Density factorization The density factorization of a GMM (1.2c) is an alternative repre-

sentation of a probability distribution that is useful for performing inference. For example, the

GMM model density can be used to define a log-likelihood function

Ly∗(µ, z) = log p(µ, z, y∗)

=
K∑

k=1

log pN (µ0,Σ0)(µk) +
N∑

n=1

log pD(π)(zn) +
N∑

n=1

log pN (µzn ,Σ)(y
∗
n)

which is a function of the parameters (µ, z) for given data (y∗). The notation y∗ indicates

that it is an observed value of the random variable y. The notation pN (µ0,Σ0)(µk) indicates

the density of a (multivariate) normal distribution with mean µ0 and covariance Σ0 evalu-

ated at µk. It is common (e.g., in statistics) to write p(µk | µ0,Σ0) to mean pN (µ0,Σ0)(µk),

although this notation loses information about which distribution is involved.

Given a density, inference can be cast as an optimization problem (e.g., using expecta-

tion maximization to maximize the log-likelihood). This gives a point estimate (written ·̂)

of the cluster means µ̂ and cluster assignments ẑ. We could also use the log-likelihood in a

Metropolis-Hastings (MH) sampling algorithm, a type of MCMC algorithm, to learn the pos-

terior distribution p(µ, z | y∗) following a Bayesian approach. This produces a distribution

over the cluster means µ and cluster assignments z instead of a single point estimate. Al-

though densities are more convenient for expressing inference, it can be more difficult to ex-
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Figure 1.3: The Monte Carlo simulation approach (left) to probabilistic inference. After we simulate
points from the distribution, we can construct an empirical histogram (right) by partitioning the space
(e.g., into quadrants) and count the number of points in each partition to determine the relative likeli-
hood. In this example, quadrant (IV) is the most likely, while quadrant (I) is the least likely.

press high-level properties about distributions. For example, to express that the sum of two

Gaussians is Gaussian using densities, we would need to write a convolution

pN (µX+µY ,σ2
X+σ2

Y )(z) =

∫
pN (µX ,σ2

X)(z) pN (µY ,σ2
Y )(z − t) dt .

1.1.2 Probabilistic Inference

Now that we have a probabilistic model, we can query it for quantities of interest. Below, we

give two informal examples of queries and inference algorithms that can be used to answer

them (approximately).

• What are the most likely cluster locations under the GMM model given the observa-
tions? To answer this, we might apply the expectation maximization algorithm to solve
for

argmax
µ

∑
z

Ly∗(µ, z)

given observed data y∗.

• What is the distribution on the location of the first cluster given the observations under
the GMM model? To answer this, we might apply Markov Chain Monte Carlo (MCMC)
sampling to obtain samples from the distribution p(µ, z | y∗) (where again, y∗ is ob-
served data).

8



In general, a family of inference algorithms (such as MCMC) can be used to approximate an-

swers to multiple kinds of queries. For example, MCMC sampling can be used to answer ex-

pectation queries, i.e., queries for the average value according to some distribution by return-

ing the average value of a collection of samples. MCMC sampling can also be used to answer

a variation of the first query. For instance, an algorithm could return the sample with the

highest log-likelihood from a collection of samples drawn via MCMC (known as the maximum

a posteriori or MAP estimate). In this dissertation, we focus exclusively on MCMC sampling

or simulation approaches to probabilistic inference.

Figure 1.3 illustrates a (Monte Carlo) sampling approach to answer a query for the shape

of a distribution. The idea is to approximate the shape of a distribution by sampling from

the distribution and constructing an empirical histogram. We can construct an empirical his-

togram from a collection of samples by partitioning the parameter space and compute the

relative likelihood of each partition as the ratio of the number of samples in a partition to the

total number of samples. In the example, partition IV is the most likely, while partition I is

the least likely.

Sampling becomes increasingly difficult as the number of dimensions increases. In partic-

ular, the number of “unit boxes” required to fill a D-dimensional box of with side-length 2

grows exponentially in D. Consequently, if we hold the number of samples fixed, then the av-

erage density of samples in each unit box decreases exponentially. This issue is colloquially

known as the “curse of dimensionality” and affects other approaches to probabilistic inference

in addition to sampling.

Probabilistic models with high-dimensional spaces are encountered frequently in practice.

For example, the D-dimensional GMM we introduced earlier has K × D + N parameters—
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K × D parameters for the K cluster means, each of which has D parameters, and N pa-

rameters for the N cluster assignments. Notably, the number of parameters in a GMM in-

creases with the size of the data as each new data point introduces a corresponding cluster

assignment. To address the problems associated with inference in high-dimensional spaces,

researchers typically take advantage of model-specific structure and use heuristics to make

inference tractable. We list several below.

1. The conditional independence relationships in a model enable us to consider sampling in
locally, low-dimensional spaces. For example given the locations of all the cluster means
in the GMM, every cluster assignment is conditionally independent of each other. That
is, sampling the N -dimensional space of cluster assignments can be reduced to sampling
N , 1-dimensional spaces given the cluster locations. Consequently, representations of
distributions such as PGMs are a staple of probabilistic modeling in practice [57].

2. First-order structure such as gradient information can be used to guide the exploration
of the parameter space. For example, MCMC algorithms such as Hamiltonian Monte
Carlo (HMC) [18] use the gradient of the model log-likelihood to explore the parameter
space.

3. A common heuristic is to apply different inference methods to different subsets of the
parameter space. For example, we may partition a model into its discrete variables and
continuous variables, and apply an appropriate method to each subset. Such a heuristic
would apply to a GMM, which has continuous-valued cluster locations and discrete-
valued cluster assignments.

1.2 Probabilistic Programming

In the context of constructing (model, query, inference) tuples, probabilistic programming can

be seen as taking a language-based approach to probabilistic modeling and inference. For in-

stance, given a model written in a probabilistic modeling language and a query, we can auto-

mate the derivation of an inference algorithm by implementing an appropriate program trans-

formation. In the rest of the section, we will compare probabilistic modeling using a PPL with

10



def GMM(D, K, N, mu_0, Sigma_0, Sigma
)(mu, z)(y):

for k <- 0 until K:
mu[k] = MvNorm(mu_0, Sigma_0)

for n <- 0 until N:
z[n] = Disc(pis)
y[n] = MvNorm(mu[z[n]], Sigma)

(a) The encoding of a GMM in a probabilistic mod-
eling language with Python syntax.

µk ∼ N (µ0,Σ0) for 1 ≤ k ≤ K

zn ∼ D(π1, . . . , πK) for 1 ≤ n ≤ N

yn | z, µ ∼ N (µzn ,Σ) for 1 ≤ n ≤ N

(b) Expressing a GMM using random variable nota-
tion.

Figure 1.4: A GMM encoded in a probabilistic modeling language with Python-like syntax (left). For com-
parison, the random variable notation is provided on the right.

the standard setting to introduce some of the advantages of this approach as well as the chal-

lenges that arise.

Modeling language Figure 1.4 gives an example of the GMM written in a PPL with

Python-like syntax. Observe that the program has similar structure to the representation of

a probability distribution written in random variable notation. Indeed, the step-by-step proce-

dure in which a probabilistic generative model can be described lends itself to being naturally

expressed in a programming language. Hence, one benefit of probabilistic programming is that

we can use a formal language to express models. Nevertheless, one challenge is to provide rea-

soning principles that give us assurance that encodings of probabilistic models in the modeling

language correspond to the models we write with standard abstractions. An additional chal-

lenge is to reconcile the discrete nature of computation with the (possibly) continuous nature

of models that we can write down using traditional probability and statistics.

Implementation As we have hinted at several times already, probabilistic programming

enables us to phrase the problem of deriving and implementing an inference algorithm in
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terms of compilation. In particular, the representation of a probabilistic model in a model-

ing language opens up the possibility of using language and compiler technology to perform

inference, similar to how using PGMs to represent distributions have opened up the possibility

of using graph algorithms to perform inference. As a reminder, practitioners use different rep-

resentations of probability distributions for different purposes—random variables are used to

summarize probabilistic models, densities are used for deriving mathematical properties use-

ful for inference, and PGMs are used for representing conditional independence relations. A

language-based approach would cast the usage of different abstractions as using different lan-

guages, and using compilation to automate the transformations between them. This breaks

the construction of an inference algorithm into more modular and manageable pieces. Nev-

ertheless, as probabilistic inference is analytically intractable in general, designing the appro-

priate languages and transformations so that the resulting system can perform approximate

inference efficiently (for a class of models) is a huge challenge.

As a step towards making probabilistic programming more practical, we examine the se-

mantics of probabilistic modeling languages and the implementation of a domain-specific PPL

that automates inference in this dissertation. For the purposes of this dissertation, we will

abbreviate the phrase (and similar phrases) “implementing a PPL that automates inference”

to simply “implementing a PPL”. We overview some of the current solutions to the semantics

and implementation of PPLs as well as introduce our approach now.

1.2.1 Semantics

A natural starting point is to interpret probabilistic programs as a sampler (e.g., [42, 119]).

As we saw previously, we can view a probabilistic program as describing a sampling proce-
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dure encoding how one believes observed data is generated. The flexibility of sampling has

inspired embeddings of probabilistic primitives in full-fledged programming languages, includ-

ing Scheme and Scala (e.g., [42, 91]). However, languages based on sampling often avoid the

basic question of what it means to sample from a continuous distribution. For instance, these

languages either have semantics given by an implementation in a host-language (e.g., [42]), or

use an abstract machine that assumes reals and primitive continuous distributions [86].

Another approach is to ground the semantics of probabilistic programs in measure the-

ory, which is the foundation of probability theory (e.g., [17, 111]). Measure theory provides

a rigorous definition of conditioning, and a uniform treatment of discrete and continuous dis-

tributions. For instance, measure-theoretic probability makes sense of why the probability

of obtaining any particular sample from an (absolutely) continuous distribution is zero, as

well what it means to observe a probability zero event. These situations are encountered fre-

quently in practice, as many models incorporate both continuous distributions and observa-

tion of real-valued data. Consequently, measure-theoretic semantics have been proposed as

a generalization of sampling semantics (e.g., [17]). However, this approach also has its draw-

backs. First, measure theory has been developed without programming language constructs

in mind (e.g., recursion and higher-order functions), unlike standard denotational semantics.

Hence, languages based on measure theory often omit language features (e.g., [17]) or develop

new meta-theory (e.g., [111]). Second, measure-theoretic semantics must also develop a cor-

responding operational theory. For instance, Toronto et al. [111] give denotational semantics

and later show how to implement a sound approximation of their ideal semantics because it is

not directly implementable.

I propose an approach to giving semantics to probabilistic programs motivated by Type-2
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computable distributions, which admit Type-2 computable sampling procedures.1 Computable

distributions have been defined and studied in the context of Type-2 (Turing) machines and

algorithmic randomness (e.g., [35, 36, 115]) as well as domain theory (e.g. [29, 30]). Their

implications for probabilistic programs have also been hinted at in the literature (e.g., [3, 34]).

Hence, I will recast these ideas in the context of high-level probabilistic languages for Bayesian

inference.

1.2.2 Compilation

A recurring theme in the implementation of a PPL is how to address the analytic intractabil-

ity of inference. We list several challenges of probabilistic inference and how PPLs have ad-

dressed them.

• As inference is intractable in general, it is unlikely that a black box approach to infer-
ence will work well for all probabilistic models of interest. Consequently, we would like
a way to derive model-specific facts useful for constructing inference algorithms. For
example, the Bugs [108, 67] system automatically detects conjugacy relations in the
probabilistic model and uses this information to construct efficient Gibbs MCMC sam-
plers. As another example, Stan [19] implements automatic differentiation (AD) [7],
which enables the system to leverage gradient information to perform HMC sampling.
Stan also leverages gradient information to perform Automatic Differential Variational
Inference [60] (AVDI), which is a non-sampling approach to inference.

• There are many kinds of inference algorithms. Ideally, a tool should support as many as
possible, given that these algorithms may exhibit different computational and statistical
behaviors depending on the model to which it is applied. More generally, end users may
want more fine-grained control over how to perform inference. For example, Blaise [16]
provides a domain-specific graphical language for expressing models and inference algo-
rithms. Other systems such as Edward [112] and Venture [68] explore other designs for
providing fine-grained control of inference.

1Because we will use the phrase “Type-2 computable” frequently, we will sometimes abbreviate it
to just “computable” when it is clear from context that we are referring to Type-2 computability.
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• Inference algorithms can be computationally expensive (e.g., MCMC algorithms [18]).
To improve the computational efficiency, we may want to leverage parallelism such as in
Augur [113] and other systems such as Anglican [119]. Moreover, the formal represen-
tation of a model opens the possibility for compiler analysis to improve the efficiency of
the generated code as done by Swift [120].

In this dissertation, I present the design and implementation of domain-specific PPL called

AugurV2 that answers posterior sampling queries for Bayesian networks expressed in a proba-

bilistic modeling language similar in expressive power to Bugs [108] or Stan [19] using MCMC

sampling techniques. More concretely, we can view AugurV2 as a tool for constructing (model,

query, inference) tuples, where (1) the model is expressed in a domain-specific modeling lan-

guage (as compared to modeling languages embedded in general-purpose languages [119, 42,

120]), (2) the query is for posterior samples given observed data, and (3) the inference is auto-

matically derived and is restricted to a family of algorithms based on MCMC sampling. The

compiler’s architecture is based off of a traditional compiler design. In particular, I define

a sequence of intermediate languages that structure the compilation process, which include

separate languages for representing models and inference. Then, I provide the corresponding

phases of compilation:

• The frontend translates the modeling language into an intermediate representation of a
model in terms of its density factorization.

• The middle-end translates an intermediate representation of a model into a high-level,
executable MCMC sampling algorithm.

• The backend translates a high-level, executable inference algorithm into an inference
algorithm for execution on the CPU or GPU.

Hence, I consider the holistic design and implementation of a restricted PPL that follows the

usual approach to compiler design to manage its complexity. I do not address the compilation

of more expressive PPLs, but hope that the ideas presented here can be a starting point for

compiling more expressive PPLs.
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1.3 Overview

In this section, I provide an overview of the contents of the dissertation, my collaborators, and

the relevant publications that the dissertation draws on. In particular, I use content from “An

Application of Computable Distributions to the Semantics of Probabilistic Programming Lan-

guages” [52] and “Compiling Markov Chain Monte Carlo Algorithms for Probabilistic Model-

ing” (to appear in Programming Language Design and Implementation, 2017) in this disserta-

tion. The first part of the dissertation addresses the modeling aspect of probabilistic program-

ming. The second part of the dissertation addresses the compilation of inference algorithms.

Chapter 2: Background Chapter 2 provides background on probability theory, (Type-2)

computable distributions, and probabilistic inference. The emphasis will be placed on relat-

ing the three concepts with one another, as opposed to presenting them in isolation. Ideally,

the design of a PPL draws on concepts from probability theory to define models, (Type-2)

computability to guide its (theoretical) implementability, and probabilistic inference to inform

an efficient and correct implementation. The background is intended to provide context for

definitions that will be used throughout the dissertation, rather than being a comprehensive

review.

However, Chapter 2 does not contain all the background pertinent to the dissertation. In

particular, Chapter 3 contains additional background relevant to giving semantics to lan-

guages, and Chapter 5 contains additional background relevant to the implementation of

PPLs.

I should point out that in the discussion of Type-2 computability, the connection to real-

izability [12, 65, 114] is missing. To the best of my knowledge, these fields have largely pro-
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ceeded independently of each other, although connections between realizability and Type-2

computability have been drawn from the realizability perspective [12]. I would like to thank

Bas Spitters and Lars Birkedal for introducing me to these ideas. An informal discussion of

the connections will be given in Chapter 4 after I have given a semantics to λCD.

Chapter 3: Towards Formal Languages for Probability Chapter 3 further mo-

tivates the technical issues with giving semantics to probabilistic programs. The conven-

tional wisdom is to use measure-theoretic structure to give semantics, without regards to com-

putability. I will further motivate the reason to consider (Type-2) computable distributions,

as opposed to more generally measures. Chapter 3 also contains background on topological

domains [11], semantic objects that possess both order-theoretic and (Type-2) computability

structure.

Chapter 4: An Application of Computable Distributions to the Semantics of

Probabilistic Programming Languages Chapter 4 contains two semantics for a PCF-

like language extended with continuous distributions called λCD. The first semantics uses

topological domains and is new to the dissertation. The second semantics uses standard com-

plete partial orders (CPOs) and is based on prior published work [52], although the presen-

tation here contains corrections for a gap discovered in that work. In particular, I would like

to thank Mitch Wand for finding a gap in an earlier argument of why an environment lookup

function in that semantics was continuous. Appendix A provides an ad-hoc fix for this gap,

which (perhaps surprisingly) relies on Type-2 computability. This motivated the definition of

a second semantics based on topological domains in this dissertation. The chapter will also

include an informal discussion of the connection to realizability.
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Chapter 5: Towards Compilation of Probabilistic Modeling Languages Chap-

ter 5 introduces background on MCMC sampling and more concretely explores the issues with

constructing MCMC sampling algorithms.

Chapter 6: Compiling MCMC Algorithms for Probabilistic Modeling Chapter 6

describes a compiler design for AugurV2, a PPL that expresses fixed-structure Bayesian net-

works. The system described in this chapter is the second iteration of a previous system called

Augur [113], which was done in collaboration with Jean-Baptiste Tristan, Joseph Tassarotti,

Adam Pocock, Stephen Greene, and Guy Steele. The previous compiler generated homoge-

nous MCMC algorithms for execution on the GPU to explore the feasibility of parallelizing

inference algorithms. The key ideas developed in this system include (1) compiling at runtime

so that we could use data set sizes to determine a parallelization strategy and (2) represent-

ing conditional independence relationships symbolically. The second iteration of the system

builds upon these ideas and supports composable MCMC algorithms for CPU and GPU exe-

cution. In particular, this caused a complete redesign of the compiler in the form of additional

intermediate languages, transformations, and runtime libraries to support more MCMC algo-

rithms and their composition. This work will appear at Programming Language Design and

Implementation, 2017.

Chapter 7: The AugurV2 Language Chapter 7 introduces the AugurV2 language and

its semantics via compilation to λCD. In particular, we will see that all AugurV2 programs

admit a density factorization, which justifies its implementation via MCMC sampling. We will

also see how (Type-2) computability informs the design of AugurV2’s conditioning primitive.

Notably, conditioning is not (Type-2) computable in general [3].
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Chapter 8: Conclusion Chapter 8 concludes the dissertation and suggest avenues for

future work.

Contributions In the first part of the dissertation, my contribution is simply one of apply-

ing known results on (Type-2) computable distributions and existing theory in the context of

a high-level probabilistic modeling language. In the second part of the dissertation, I present

the design and implementation of a domain-specific PPL called AugurV2 that automates pos-

terior sampling queries for a class of models and use the semantics from the first part to jus-

tify aspects of its design.
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2
Background

In this chapter, we provide background on (1) measure-theoretic probability (e.g., see Billings-

ley [14]), (2) Type-2 computability (e.g., see Weihrauch [116]) and computable distributions

(e.g., see Schröder [102] and Hoyrup [51]), and (3) Bayesian modeling and inference (e.g., see

Bayesian Data Analysis [38]). Items (1) and (2) will be most relevant for the first part of the

dissertation. Items (1) and (3) will be most relevant for the second part of the dissertation.

The background is intended to provide context for definitions that will be used throughout

the dissertation, rather than being a comprehensive review. For a pedagogical introduction to
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the material, we refer the reader to the references provided above.

2.1 Probability

Formulating probability theory in terms of measure theory enables (1) a uniform treatment

of discrete and continuous distributions and (2) a rigorous definition of conditioning—in par-

ticular, conditioning on probability zero events. Due to the robustness of this formulation,

measure-theoretic probability is often taken as the foundation of modern probability theory.

In this section, we will concentrate our review on distributions and random variables, and

delay conditioning until Section 2.3.2. Before proceeding directly to the measure-theoretic

formulation, we begin with discrete and continuous distributions as presented in an applied

setting.

2.1.1 Discrete and Continuous Distributions

A discrete distribution assigns probability to a discrete (i.e., at most countable) set. It is

characterized by a probability mass function (pmf), which maps a value in its domain X to

a probability in the interval [0, 1], such that the probabilities sum to 1. More concretely, a

pmf p : X → [0, 1] satisfies ∑
x∈X

p(x) = 1 ,

where |X| is at most countable. For example, a fair coin flip resulting in 0 (for heads) or 1

(for tails) can be modeled as a Bernoulli distribution with pmf p : {0, 1} → R such that

p(0) = 0.5 and p(1) = 0.5.

A continuous distribution assigns probability to the reals R. It is characterized by a cumu-

lative distribution function (cdf), which maps a value c ∈ R to the probability of the interval
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(−∞, c]. For example, a uniform distribution on the interval (a, b), written U(a, b), has cdf

F (c) =



0 when c < a

x−a
b−a when a ≤ c < b

1 when b ≤ c .

Note that a cdf gives the probability of an interval and not a single point. A probability den-

sity function (pdf) is the analog of a pmf in the continuous setting. When a pdf f : R → R

exists, it is related to the cdf F : R→ [0, 1] as

F (c) =

∫ c

−∞
f(x) dx .

For example, the uniform distribution U(a, b) has pdf

p(x) =


1

b−a when a ≤ x ≤ b

0 otherwise .

As a matter of terminology, it is common in practice to refer to only those distributions with

pdfs as continuous distributions. We will use a measure-theoretic distinction and call these

absolutely continuous distributions. Although a pdf is an analog of a pmf, note that a pdf is

not a probability. For instance, the pdf pU(0,1/2) of the uniform distribution U(0, 1/2) has

pU(0,1/2)(1/4) = 2, which is greater than 1 so it is not a probability. Indeed, the probability

of the event {x} for any point x according to an absolutely continuous distribution is zero.
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2.1.2 Measure-theoretic Probability

Random variables are the basic object of study in measure-theoretic probability. Informally,

we can think of a random variable as a variable that takes on an uncertain value according to

a distribution. It is a variable in the sense that it obeys a substitution principle, albeit a non-

standard one compared to an ordinary variable (which can be substituted in any context).

The underlying distribution is formulated as a measure. Importantly, both discrete and con-

tinuous distributions can be formulated as measures, which informally, assign probabilities to

special subsets (called events) of a space. The base space that provides the structure required

for probability is called a measurable space. Later in Section 2.2, we will see that computable

distributions combine measure-theoretic structure with topological structure, which provides a

notion of approximation suitable for modeling computability.

Once we have a notion of random variable, we can answer questions about collections of

random variables (known as a stochastic process). For example, we may be interested in the

joint distribution of some (finite) subcollection of random variables. As another example, for

a single random variable, we may be interested in computing its expectation, i.e., its average

value. Now that we have an idea of how the overall theory is setup, we can review the defini-

tions that we will need from measure-theoretic probability formally.

Measures The pair (Ω,F) is a measurable space, where Ω is an underlying set and F is a

collection of subsets of Ω called a σ-algebra. A σ-algebra is closed under countable unions and

complements (and hence also countable intersections). Then, a measure µ : F → [0,∞] on Ω

maps a measurable set (i.e., any set in F) to a non-negative real number, such that µ(∅) = 0

and µ is countably additive (i.e., µ(
∪∞

i=1 Ai) =
∑∞

i=1 µ(Ai) for any collection {Ai}i∈N of dis-
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joint sets). In the probabilistic setting, a measurable set is also called an event. A probability

measure or probability distribution is a measure µ such that the mass of the entire space is 1

(i.e., µ(Ω) = 1). Thus, a distribution maps events to probabilities.

A discrete distribution is defined on a discrete set Ω with σ-algebra 2Ω (i.e., the collection

of all subsets of Ω or the powerset of Ω). For example, the Bernoulli distribution can be en-

coded as a measure µ with µ{0} = 0.5 and µ{1} = 0.5, where the probability of the other sets

is determined by the measure axioms. A continuous distribution is defined on R with (Borel)

σ-algebra F = σ({(a, b) | a, b ∈ R}), where the operation σ closes the collection of open inter-

vals {(a, b) | a, b ∈ R} under the σ-algebra operations. For example, the uniform distribution

U(0, 1) has measure µ(a, b) = b − a when (a, b) ⊆ (0, 1). On the real line, it is common to use

Lebesgue measure, i.e., the completion of the Borel σ-algebra.1

Random variables Let (Ω,FΩ) and (X,FX) be measurable spaces. Then, a function f :

Ω → X is measurable if f−1(B) is measurable (i.e., f−1 ∈ FΩ) for all measurable B (i.e., B ∈

FX). Let (Ω,F) be a measurable space and µ be a probability measure on F . Then, the triple

(Ω,F , µ) is a probability space. Let (Ω,FΩ, µ) be a probability space and (X,FX) be a mea-

surable space. Then, a X-valued random variable X is a measurable function X : Ω → X. As

convention, we will used bold-faced, capital letters such as X to name random variables. Let

(Ω,F , µ) be a probability space. The distribution of X, written P(X ∈ ·) is the pushforward of

µ along X, i.e., P(X ∈ ·) = µ ◦X−1.

Remark (Interpretation of random variables). Let (Ω,F , µ) be a probability space, (X,FX)

be a measurable space, and X be a X-valued random variable. As terminology, the domain of

1As a reminder, a measure is complete if every subset of a measure zero set is measurable.
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a random variable Ω is called the sampling space. The sampling space Ω can be interpreted

as containing all possible quantities that determine the value of X. For example, suppose

X ∼= 2 ∼= {0, 1} is the space of coin flips. Then, we can imagine Ω to be a subset of Rd that

contains physical quantities that determine the outcome of a coin flip such as the angle and

force with which it was flipped. The random variable X could then be interpreted as a physics

simulation that converts the input angle and force into the result of a coin flip. Observe that

the underlying distribution µ on Ω makes the result of the coin flip random. Notably, in prob-

ability theory, one never explicitly describes what the sample space is—a sample space is sim-

ply assumed to exist. As we will see later, this will not be the case for statisticians who are

interested in modeling the sampling space so they can make inferences about the underlying

distribution given observed data (Section 2.3).

Expectation The expectation of a real-valued random variable is intuitively its average

value. It is defined by a Lebesgue integral. Let X be a real-valued random variable with dis-

tribution µ. Then, its expectation is the integral of the identity function with respect to its

distribution, written

E[X] =

∫
X

x dµ .

The above is perhaps better written as

E[X] =

∫
X

(x̄ 7→ x̄) dµ

to indicate that we integrate the (measurable) function x̄ 7→ x̄ with respect to the distribution

µ.
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Joint distributions Let (X,FX) and (Y,FY ) be measurable spaces. Let X be a X-valued

random variable and Y be a Y -valued random variable. Then, the random vector (X,Y) has

a joint distribution, written P(X ∈ ·,Y ∈ ·). We say that X is independent of Y if its joint

distribution factors, i.e.,

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B) .

Densities and kernels Let (X,FX) be a measurable space. Let µ and ν be measures on

X. We say µ is absolutely continuous with respect to ν if µ(B) = 0 whenever ν(B) = 0 for any

measurable B. We say that measurable f : X → R is a density of µ if

µ(B) =

∫
f dν

for µ absolutely continuous with respect to ν.2 A common case is when X is the real line and

ν is the Lebesuge measure.

Let (X,FX) and (Y,FY ) be measurable spaces. Let κ : X ×FY → [0, 1]. Then, We say that

κ is a probability kernel if (1) κx is a probability measure for every x ∈ X, where κx(B) ≜

κ(x,B), and (2) κB is measurable for every B ∈ FY , where κB(x) ≜ κ(x,B).

Importantly, a probability kernel generalizes the notion of a conditional density. To see

this, let X be a X-valued random variable with distribution µX and Y be a Y -valued random

variable with distribution µY. Moreover, suppose that the random vector (X,Y) has joint

2The Radon-Nikodym theorem gives conditions under which a density exists.
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density fX,Y, and marginal densities fX and fY. Then, a conditional density is defined as

fY|X=x(y) =
fX,Y(x, y)

fX(x)

such that

µY(B) =

∫
B

fY|X=x(y) fX(x) dµX .

In particular,

κx(B) =

∫
B

fY|X=x dµY ,

where κ : X ×FY → [0, 1] is a probability kernel.

2.2 Computability

In this section, we provide background on Type-2 computability, also known as Type-Two

Theory of Effectivity (TTE) [116]. Our goal is to review (Type-2) computable distributions [51,

36, 115], which we will use to interpret distributions in a probabilistic program. Our review of

Type-2 computability will proceed in several steps, each successively more abstract.

1. We review the Turing machine model that underlies Type-2 computability and contrast
it with ordinary computability theory (i.e., Type-1 computability) (see Section 2.2.1).

2. We review computable metric spaces [51], which can be used to formulate computable
reals (see Section 2.2.2). Importantly, (Borel) distributions can be formulated as both
points of the appropriate computable metric space as well as computable sampling func-
tions.

3. We review represented spaces [87], the most general space that has a computability
theory that is derived from Turing machines (see Section 2.2.3). Notably, represented
spaces form a Cartesian closed category, which will be useful when we transition to giv-
ing semantics to probabilistic programs.
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2.2.1 Machine Model

Type-2 computability theory is grounded on the same Turing machine model that forms the

foundation of standard computability theory. That is, a Type-2 machine is a finitely-specified

machine that reads/writes symbols from a finite alphabet Σ to/from (infinite) tapes. (For

the formal definition of a Turing machine, we refer the reader to Sipser [103].) Hence, we will

simply refer to Type-2 machines as Turing machines. The primary difference as compared

to standard computability theory is the condition under which a Turing machine is said to

compute an answer.

In the standard setting, a Turing machine computes on finite-length words, and hence, can

halt with the answer on the output tape. As a reminder, a (partial) word function f : Σ∗ ⇀

Σ∗ is considered computable if there is a Turing machine with tape alphabet Σ that halts with

f(w) written on the output tape for every w ∈ dom(f), where Σ∗ ≜ {w0 . . . wn | n ∈ N} is the

set of finite-length words comprised of letters from Σ. Note that any set X that can be put in

surjection with Σ∗ can then inherit the corresponding computability theory. For example, as

Σ∗ can be put in bijection with N, we can derive a notion of a computable function f : N ⇀

N. Thus, standard computability theory concerns discrete values.

In the Type-2 setting, a Turing machine computes on streams, and hence, has a productiv-

ity condition imposed on the symbols written to the output tape. Let Σω ≜ {w0w1 . . . | wn ∈

Σ, n ∈ N} be the set of streams comprised of letters from Σ. Moreover, we write w ⊏ p to in-

dicate that the word w is a prefix of the stream p and p>|w| to indicate the rest of the stream

without the prefix w. Then, a (partial) stream function f : Σω ⇀ Σω is considered computable

if there is a Turing machine with tape alphabet Σ that for p ∈ dom(f), eventually outputs

f(p) such that for any w1 ⊏ w2 ⊏ p, the output tape satisfies f(w1p>|w1|) ⊏ f(w2p>|w2|) ⊏
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f(p). This notion of computability enforces a finite prefix property: finite prefixes of the in-

put determine finite prefixes of the output. Hence, Type-2 computability concerns computing

arbitrarily-accurate approximations to continuous values. In particular, the emphasis on ap-

proximation means that the structure of topological spaces will be useful for formulating these

ideas. For background on topological spaces, we refer the reader to standard texts [75].

2.2.2 Computable Metric Spaces

To build towards the definition of computable distribution, we begin by considering com-

putable reals. Intuitively, a real is computable if a Turing machine can enumerate its binary

expansion. More formally, a real x ∈ R is computable if we can enumerate a fast Cauchy se-

quence of rationals that converges to x. Recall that a sequence (qn)n∈N is Cauchy if for every

ϵ > 0, there is an N such that |qn − qm| < ϵ for every n,m > N . Thus, the elements of a

Cauchy sequence become closer and closer to one another as we traverse the sequence. When

|qn − qn+1| < 2−n for all n, we call (qn)n∈N a fast Cauchy sequence. Hence, the representa-

tion of a computable real as a fast Cauchy sequence evokes the idea of enumerating its binary

expansion.

As an example of a computable real, consider π and one possible series expansion of it be-

low [6].

π =
∞∑
k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]

An algorithm can use the above series expansion and a rate of convergence to obtain a fast

Cauchy sequence (e.g., the BPP algorithm [6]).

A function f : R → R is computable if given a (fast Cauchy) sequence converging to x ∈ R,

there is an algorithm that outputs a (fast Cauchy) sequence converging to f(x). For example,
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the function +π : R → R is computable because an algorithm can obtain a (fast Cauchy)

output sequence by adding the (fast Cauchy) input sequence element-wise to a (fast Cauchy)

sequence of π.

A topological space with a notion of distance is a metric space. As a reminder, a metric

space (X, d) is a set X equipped with a metric d : X ×X → R. A metric induces a collection

of sets called (open) balls, where a ball centered at c ∈ X with radius r ∈ R is the set of

points within r of c, i.e., B(c, r) = {x ∈ X | d(c, x) < r}. The topology O(X) associated

with a metric space X is the one induced by the collection of balls. Hence, the open balls of a

metric space provide a notion of distance in addition to providing a notion of approximation.

Example 1.

• (N, dDiscrete) endows the naturals N with the discrete topology (i.e., O(N) = 2N), where
dDiscrete is the discrete metric (i.e., d(n,m) = 0 if n = m and d(n,m) = 1 otherwise for
n,m ∈ N).

• (R, dEuclid) endows the reals R with the familiar Euclidean topology, where dEuclid is the
standard Euclidean metric.

• (2ω, dCantor) endows the set of bit-streams 2ω with the Cantor topology, where dCantor is
defined as

dCantor(x, y) = 1/2n ,

where n = min{i | xi ̸= yi}. One can check that a basic open set of the Cantor topology
is of the form a1a2 . . . an2

ω, where ai ∈ 2 for 1 ≤ i ≤ n. That is, basic open sets of
Cantor space fix finite-prefixes.

Computable metric spaces Intuitively, a computable metric space imposes additional

conditions on a metric space so that a Turing machine can enumerate successively more ac-

curate approximations (according to the metric) to a point in the metric space. We say S

is dense in X if for every x ∈ X, there is a sequence (sn)n∈N that converges to x, where
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sn ∈ S for every n. We say that (X, d) is complete if every Cauchy sequence comprised of

elements from X also converges to a point in X. Then, a computable metric space [51, Def.

2.4.1] is a tuple (X, d, S) such that (1) (X, d) is a complete metric space, (2) S is a countable,

enumerable, and dense subset, and (3) d(si, sj) is computable for si, sj ∈ S. For example,

(R, dEuclid,Q) is a computable metric space for the reals where we use the rationals Q as the

approximating elements. Note that we can equivalently use dyadic rationals as the approxi-

mating elements instead of Q.

Computable distributions A computable distribution over the computable metric space

(X, d, S) can be formulated as a computable point of the computable metric space

(M(X), dρ,D(S)) ,

where M(X) is the set of Borel probability measures on a computable metric space (X, d, S),

dρ is the Prokhorov metric (see [51, Defn. 4.1.1.]), and D(S) is the class of distributions with

finite support at ideal points S and rational masses (see [51, Prop. 4.1.1]). The Prokhorov

metric is defined as:

dρ(µ, ν) ≜ inf{ϵ > 0 | µ(A) ≤ ν(Aϵ) + ϵ for every Borel A} ,

where Aϵ = {x | d(x,A) < ϵ}. One can check that the sequence below converges (with respect

to the Prokhorov metric) to the (standard) uniform distribution U(0, 1).

{
0 7→ 1

2
,
1

2
7→ 1

2

}
,

{
0 7→ 1

4
,
1

4
7→ 1

4
,
2

4
7→ 1

4
,
3

4
7→ 1

4

}
, . . . ,
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Thus, a uniform distribution can be seen as the limit of a sequence of increasingly finer dis-

crete, uniform distributions. Although the idea of a computable distribution as a computable

point is fairly intuitive for the standard uniform distribution, it may be less insightful for

more complicated distributions.

Alternatively, we can think of a computable distribution on a computable metric space

(X, d, S) in terms of sampling, i.e., as a (Type-2) computable function 2ω → X. To make

this more concrete, we sketch an algorithm that samples from the standard uniform. The idea

is to generate a value that can be queried for more precision instead of a sample x in its en-

tirety. Thus, a sampling algorithm will interleave flipping coins with outputting an element to

the desired precision, such that the sequence of outputs (sn)n∈N converges to a sample.

For instance, one binary digit of precision for a standard uniform corresponds to obtaining

the point 1/2 because it is within 1/2 of any point in the unit interval. Demanding another

digit of precision produces either 1/4 or 3/4 according to the result of a fair coin flip. This is

encoded below using the function bisect, which recursively bisects an interval n times, start-

ing with (0, 1), using the random bit-stream u to select which interval to recurse on.

uniform : (Nat→ Bool)→ (Nat→ Rat)

uniform ≜ λu. λn. bisect u 0 1 n

In the limit, we obtain a single point corresponding to the sample.

The sampling view is (computably) equivalent to the definition of a computable distribu-

tion in terms of computable metric spaces. To state the equivalence, we need a few defini-

tions. A computable probability space [51, Def. 5.0.1] (X,µ) is a pair where X is a computable
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metric space and µ is a computable distribution. We call a distribution µ on X samplable if

there is a computable function s : (2ω, µiid) → (X,µ) such that s is computable on dom(s) of

full-measure and is measure-preserving.

Proposition 2.2.1 (Computable iff samplable, see [33, Lem. 2 and 3]). A distribution µ ∈

M(X) on computable metric space (X, d,S) is computable iff it is samplable.

Hence, proposition 2.2.1 gives the computable analog of the probability integral transform

and inverse transform from statistics.

Remark (Sampling). Note that the definitions of a sampler and a random variable are simi-

lar. The difference between the two is somewhat philosophical—a sampler has an explicitly-

specified underlying probability space (e.g., 2ω), whereas the underlying probability space for

a random variable is left unspecified (see Remark 2.1.2).

2.2.3 Represented Spaces

Roughly speaking, a represented space is an abstraction that provides a more synthetic ap-

proach to Type-2 computability. That is, instead of constructing a Turing machine to witness

the continuity/computability of a function, we can instead write the function as a composition

of continuous/computable primitives. Additionally, represented spaces and continuous/com-

putable maps between them form a Cartesian closed category of spaces. This will be useful for

extending Type-2 computability to the semantics of higher-order programming languages. We

now review represented spaces following Pauly’s introduction [87].

A represented space (X, δX) is a pair of a set X with a partial surjective function δX : 2ω ⇀

X called a representation. We call p ∈ 2ω a name of x when δX(p) = x. A realizer for a func-

tion f : (X, δX) → (Y, δY ) is a (partial) function F : 2ω ⇀ 2ω such that δY (F (p)) = f(δX(p))
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for p ∈ dom(f ◦ δX). A function f : X → Y between represented spaces is called computable

if it has a computable realizer. It is called continuous if it has a continuous realizer (with re-

spect to the Cantor topology). Unfolding the definition of continuity of a (partial) function

f : 2ω ⇀ 2ω on Cantor space shows that it encodes the finite prefix property. As a reminder,

this means that a machine can compute f(p) to arbitrary precision after consuming a finite

amount of bits of p in finite time when f is continuous.

Let (X, δX) and (Y, δY ) be represented spaces. The notation ⟨ ·, · ⟩ : 2ω × 2ω → 2ω is a

standard tupling function that dovetails the two input bit-streams.

1. The product of represented spaces, written X × Y , is a represented space. It has the
representation δX×Y ⟨ p, q ⟩ = (δX(p), δY (q)).

2. The exponential of represented spaces, written C (X,Y ), is a represented space. It has
representation δX→Y ⟨ 0n1p ⟩ = f if the n-th Turing machine equipped with oracle p is a
realizer of f .

Proposition 2.2.2 ([87, Sec. 3]). The category with represented spaces as objects and contin-

uous/computable maps as morphisms is Cartesian closed.

The following result connects computability with continuity via oracle Turing machines. As

a reminder, an oracle Turing machine is a standard Turing machine that additionally has read

access to an oracle tape that contains a (possibly non-computable) bit-stream to start.

Proposition 2.2.3 ([87, Sec. 3]). A function f : (X, δX) → (Y, δY ) is continuous (as a map

between represented spaces) iff it is computable by an oracle Turing machine.

As an example of how to use this proposition, suppose we want to show partialx(f) = y 7→

f(x, y) : C (X × Y, Z) → C (Y, Z) is continuous for x ∈ X. Let the name of f be 0n1p, i.e.,

δX→Y (0
n1p) = f . Then, we can construct a Turing machine M with oracle δX(x), that runs
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the n-th Turing machine equipped with oracle p on input ⟨ δX(x), q ⟩, for some δY name q on

M ’s input tape. Hence, we have shown partialx is computable relative to some oracle, so the

map is continuous. Below, we give a few examples of represented spaces.

• (S, δS) is a represented space. It has underlying set S = {⊥,⊤} and representation
δS(⊥) = 0ω and δS(⊤) = p for p ̸= 0ω. In particular, this encodes the notion of semi-
decidability—a Turing machine semi-decides that a proposition holds (encoded as ⊤)
only if it eventually outputs a non-zero bit. The space S is known as Sierpinski space.

• Let (X, d, S) be a computable metric space. Then, (X, δMetric) is a represented space
with representation δMetric that uses fast Cauchy sequences as names. More concretely,
(δQ(wn))n∈N → δMetric(p) when δ(p) = ⟨ w1, w2, . . . ⟩. As a special case, (R, δR) is
a represented space, where δR is a representation that uses fast Cauchy sequences of
rationals as names.

We can associate a collection of open subsets O(X) to every represented space (X, δ) as

O(X) ≜ {f−1{⊤} | f ∈ C (X, S)}. In particular, this shows that testing if a point is contained

in an open set is semi-decidable. However, we should be careful not to identify the notion of

a continuous map between represented spaces with a topological continuous function until we

introduce the concept of admissibility. Recall that a representation δX of X induces the quo-

tient topology on X, i.e., U ⊆ X is open if δ−1X (U) is open on dom(δX). For our purposes,

we call a represented space admissible if every topologically continuous function f : Y → X

(i.e., continuous with respect to quotient topologies) is a continuous map between represented

spaces.3 Note that a continuous map between represented spaces is already topologically con-

tinuous because pre-images are computable:

f−1(1U ) = 1U ◦ f ,

3Pauly gives a different definition [87, Defn. 26] and three characterizations [87, Thm. 36]. For our
purposes of relating to topological continuity, we take one of the characterizations as the definition
instead.
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where 1U ∈ C (Y,S) ∼= O(Y ) is the characteristic function and f ∈ C (X,Y ). Thus, the contin-

uous maps between admissible represented spaces coincide with the topologically continuous

maps. We repeat the examples of represented spaces above, this time describing the associated

topology.

• The Sierpinski space (S, δS) is an admissible represented space. It has opens O(S) =

{∅, {⊤}, {⊥,⊤}}.

• (X, δMetric) is an admissible represented space, where the topology coincides with the
one induced by the basis of open balls.

Remark (Qcb spaces). For our purposes, we will consider only admissible represented spaces.

In this case, we can interchangeably use represented space and qcb space [11]. A qcb space X

(i.e., T0 quotient of a countably based space) can be characterized as a space with admissi-

ble representation. A representation δX of X is admissible if for any other representation δ′X

of X, the identify function on X has a continuous realizer [11, Defn. 3.10]. If X and Y are

qcb spaces, then the topologically continuous functions between them coincide with those that

have continuous realizers [11, Cor. 3.13], which gives the same characterization as an admissi-

ble represented space.

In the literature, qcb spaces arise in the study of topological domains (e.g., as in Batten-

feld [11]), domains that possess a notion of Type-2 computability, whereas represented spaces

are used to clarify results on computability. As we will apply results from both the semantics

aspect and Type-2 computability aspect, we have introduced both terms.
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2.3 Bayesian Modeling and Inference

In this section, we shift gears from reviewing background useful for PPL semantics to the ap-

plication of PPLs to Bayesian modeling and inference. Hence, the ideas here broadly fall un-

der the realm of statistics. First, we review how random variables can be used to define prob-

abilistic generative models and comment on the common case when these models have density

(Section 2.3.1). Second, we review the measure-theoretic notion of conditioning as conditional

expectation and relate it to the common case of conditioning with conditional densities (Sec-

tion 2.3.2).

2.3.1 Bayesian Modeling

We begin by introducing the overall setup of a parameterized statistical model using measure-

theoretic language. Then, we will go over it using applied statistics notation. Throughout this

section, let (Θ,FΘ) and (Y,FY ) be measurable spaces. We refer to the measurable space Θ as

the parameter space and Y as the observation space. Now, consider the (measurable) functions

(1) Y : Θ→ Y and (2) f : Y → Θ.

Measure-theoretic treatment We can interpret the former as a Y -valued random vari-

able Y, where the parameter space Θ is Y’s sampling space. As a reminder, the sampling

space is implicit in the context of probability theory. In contrast, it is explicit in the context

of statistics in order to model phenomenon. In particular, we model the randomness in the

observation space with a family of model likelihoods {ℓθ | ℓθ : Y → R integrable}θ∈Θ, which

for a parameter θ, gives an (integrable) function ℓθ that compares the relative likelihoods of

different observations.
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We can interpret the latter as a statistical inference procedure that estimates the θ ∈ Θ

that produces the observation y ∈ Y and quantifies the uncertainty associated with the pro-

cedure. These procedures will be the subject of Section 2.3.2. For now, we will focus on how

the construction of models are affected by the choice of inference procedure, concentrating on

Frequentist and Bayesian inference. As a reminder, this dissertation will focus exclusively on

the application of a PPL to Bayesian inference, but it is still worthwhile to also review the

Frequentist setting.

In a Frequentist setting, one treats the observed data as random. That is, one considers the

probability space (Y,FY , µθ0), where µθ0 is the distribution on the observation space Y and

θ0 is a deterministic, but unknown parameter value. Writing this in random variable notation,

we have

Y ∼ µθ0 .

The random variable Y can be interpreted as a measure-preserving function from the parame-

ter space to the observation space, where we have stated what the distribution is on the obser-

vation space. Hence, P(Y ∈ B) = µθ0(B) for measurable B.

The interpretation of a model in the Frequent setting is that µθ0 is the true distribution

that our observations come from. However, we do not know the value of the true parameter

θ0. The Frequentist methodology provides a set of tools for estimating the parameter, written

θ̂, where the uncertainty in the estimate is quantified with respect to the true distribution on

data µθ0 .

In a Bayesian setting, one treats the parameter as random. That is, one consider the prob-

ability space (Θ,FΘ, ν), where ν is a distribution on the parameter space Θ. Writing this in
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random variable notation, we have

Θ ∼ ν

Y | Θ = θ ∼ µθ ,

We will comment on the notation “Y | Θ = θ” in Section 2.3.2. For now, we read it as:

“Given that Θ takes on the value θ, Y has distribution µθ.” Intuitively, it defines a family

of random variables. We can interpret the random variable Θ as a measure-preserving func-

tion from some unspecified sample space to θ, where we have stated the distribution on Θ.

Hence, P(Θ ∈ B) = ν(B) for measurable B. We can interpret {Y | Θ = θ}θ∈Θ as a family

of measure-preserving functions from the parameter space to Y . Hence, P(Y | Θ = θ ∈ B) =

µθ(B) for measurable B.

The interpretation of a model in the Bayesian setting is that ν describes our subjective,

prior beliefs about the distribution on the parameter space, the prior distribution, that gener-

ates an observation. As we will see, the Bayesian paradigm provides a methodology for updat-

ing our prior beliefs given observed data to obtain a posterior distribution. In particular, we

can use the posterior distribution as our new prior distribution when making inferences about

additional observations.

Applied treatment In an applied setting, one typically has densities. Hence, we will go

over the Bayesian setup again, mostly to explain the notational conventions associated with

probabilistic modeling with densities.

We repeat the Bayesian model written with random variable notation below for conve-
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nience.

Θ ∼ ν

Y | Θ = θ ∼ µθ .

In the case we have densities, it is typical to write the following model with several abuses of

notation, as below.

θ ∼ p(θ)

y | θ ∼ p(y | θ) .

First, we have overloaded the variable used to name values a random variable takes on with

the random variable itself. For example, we have overloaded θ to be Θ. Second, the notation

p(θ) indicates a density. In this case, p is not being applied to a variable θ. Rather, the vari-

able θ indicates that it is a density on the space Θ. Hence, a perhaps less confusing way of

writing it out would be

θ 7→ pΘ(θ)

or simply pΘ to indicate that pΘ is the density associated with the random variable Θ.

It is also common to express a Bayesian model according to its density factorization. For

example, we would write

p(y | θ) p(θ)

as the model distribution. In particular, it is typical to conflate the notion of density and dis-

tribution in practice. Finally, we review some terms used to describe probabilistic models in
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practice.

A probabilistic generative model describes a joint distribution p(θ, y) on the product of the

parameter space and observation space. It is possible to generate synthetic data from the de-

scription of the model—hence, its name. In contrast, a discriminative model describes the

conditional distribution p(y | θ). Hence, the model does not fully describe how to create syn-

thetic data. A Bayesian model with distribution p(θ, y) = p(y | θ) p(θ) can be interpreted as

a generative model where we sample from the prior p(θ) and likelihood p(y | θ) to obtain a

synthetic data set.

Perhaps the most robust feature of Bayesian modeling is the ability to perform hierarchical

modeling. The idea is that in addition to putting priors on the parameters to our sampling

distribution, we can also put priors on our priors. Let Φ and Θ be parameter spaces, and Y

be the observation space. Then, a (2-level) hierarchical Bayesian model has the form

p(y, θ, ϕ) = p(y | θ) p(θ | ϕ) p(ϕ) .

Thus, we model uncertainty on a parameter θ, in addition to modeling uncertainty on our

observation y. Note that the trivial factoring p(y | ϕ, θ) p(ϕ | θ) p(θ) always holds, but is rather

uninformative. Much of the power of probabilistic modeling comes from how it (non-trivially)

factors.

When all distributions in a Bayesian model with joint distribution p(y, θ) = p(y | θ) p(θ)

have a functional form (i.e., we can write down a formula for its density), it is called a para-

metric model. Depending on the context, a non-parametric model has one of two meanings. In

statistics, it is common to call a joint distribution whose density does not have known func-

tional form non-parametric. In machine learning, a non-parametric distribution is used to
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refer to a distribution on a countable number of parameters (see non-parametric priors such

as the Dirichlet process [107]). In either case, inference in the non-parametric setting is more

difficult than in the parametric setting.

The number of parameters in a Bayesian model does not need to be known ahead of time.

When the number of parameters is fixed and the functional form of the density does not de-

pend on what value the parameters take on, we call it a fixed-structure model.

2.3.2 Conditioning and Bayesian Inference

Conditional expectation Let (Ω,F , µ) be a probability space. Let X be a real-valued

random variable on the probability space and Y be a random variable that is measurable with

respect to the sub-σ-algebra H ⊆ F , where H ≜ {Y−1(B) | B Borel}. The conditional

expectation of X given Y, written E[X | Y], is any Y-measurable function h (i.e., random

variable) such that the equation below holds for every B ∈ H.

∫
B

h dµ =

∫
B

X dµ

Any such measurable h is called a version of the conditional expectation. Note that the condi-

tional expectation E[X | Y] is a family of Y-measurable functions, but that each function in

this family will differ only on a set of measure zero.

Regular conditional probability A regular conditional probability is a probability ker-

nel κ such that P(X ∈ A, Y ∈ B) =
∫
κ(x,B)PX(dx), where A and B are measurable. One

can show that all random variables on a separable complete metric space admit a regular con-

42



ditional probability.4 Recall that a computable metric space is a separable complete metric

space, and hence, admits regular conditional probabilities.

Conditioning with densities Let X be a X-valued random variable and Y be a Y -valued

random variable. Furthermore, let P(X ∈ ·) have density fX(·) and fY|X=x(·) be a conditional

density. Then,

fX|Y=y(x) =
fX(x) fY|X=x(y)∫
fX(x) fY|X=x(y) dx

Remark (Computability of conditioning). In general, conditioning is not (Type-2) computable [3].

Nevertheless, in practice, it is (Type-2) computable. We will discuss this more in depth in

Chapter 4 after we have introduced a library for writing computable distributions. In particu-

lar, we will be able to write a program using the library that encodes a counterexample given

by Ackerman et al. [3] of a computable distribution whose conditional is not computable. We

will also explain using the library when conditioning is (Type-2) computable, again following

Ackerman et al.’s results on the computability of conditioning.

4More generally, see disintegration [21].
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3
Towards Formal Languages for Probability

In this chapter, we will explore some of the difficulties with giving semantics to probabilistic

languages extended with continuous distributions. Then, we review some semantic constructs,

including topological domains (see Battenfeld et al.’s summary [11]), that we will use later to

give semantics to a core probabilistic language.
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3.1 The Basic Problem

In order to give denotational semantics to a programming language extended with continuous

distributions, we should find mathematical structures that support (1) language constructs

(e.g., recursion and higher-order functions), (2) familiar reasoning principles about distribu-

tions, and (3) an algorithmic sampling interpretation. In this section, we illustrate some of the

difficulties using a simple programming language extended with distributions.

For now, consider a language with finitely supported discrete distributions with rational

probabilities, whose syntax is given below.

τ ::= Nat | Dist τ

e ::= x | z | dist | nop e | return e | x← e ; e

Types include naturals Nat and distributions Dist τ . The language contains variables x, inte-

gers z, distributions dist, and primitive operations nop e on naturals. As others have observed,

probabilities form a monad (e.g., see the Giry monad [41]). Hence, the language provides

monadic syntax for constructing and manipulating distributions. Informally, return e lifts

a deterministic computation into the probability monad and monadic bind x ← e1 ; e2 can be

read as sampling: “draw a sample according to distribution e1, bind the value to variable x,

and continue with distribution e2.”

Following Ramsey et al. [94], we can interpret a type Dist τ as a pmf which maps values of

type τ (written VJτK) to a probability in the interval [0, 1]

(Finite discrete) VJDist τK ≜ VJτK→ [0, 1] ,
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where |VJτK| is finite (for simplicity) and
∑

x∈VJτK VJDist τK(x) = 1. Monadic bind x ←

e1 ; e2 re-weights the pmf denoted by e2 by re-weighting according to the pmf denoted by

e1. We write the expression denotation function as EJΓ ⊢ e : τKρ ∈ VJτK under a well-typed

environment ρ with respect to Γ (i.e., ρ ∈ VJΓK).
(Bind) EJΓ ⊢ x← e1 ; e2 : Dist τ2Kρ ≜

v 7→
∑

x̄∈dom(f1)

(EJΓ, x : τ1 ⊢ e2 : Dist τ2Kρ[x 7→ x̄])(v) · f1(x̄)

where f1 = EJΓ ⊢ e1 : Dist τ1Kρ is the denotation of e1.

Because all quantities are discrete and finite, there is an obvious correspondence between

the (denotational) semantics and traditional notions of computation. Nevertheless, this frame-

work cannot be directly extended to support recursion (e.g., see Ramsey et al. [94]). For ex-

ample, we can write a program that constructs a distribution on a Boolean-valued stream in a

language with recursion and discrete distributions. Notably, the probability of obtaining any

stream is 0, so this program does not have a pmf.

Next, we can consider continuous distributions in the context of a probabilistic language

by adding the type of reals Real to the language and the appropriate distributions. One ap-

proach is to interpret Dist τ as a measure-theoretic distribution (e.g., [17]).

(Measure) VJDist τK ≜ F → [0, 1] where F is a σ-algebra on VJτK
We can use monadic bind again, but now the re-weighting is accomplished by a (Lebesgue)
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integral.

(Bind) EJΓ ⊢ x← e1 ; e2 : Dist τ2Kρ(B) ≜∫
(x̄ 7→ EJΓ, x : τ1 ⊢ e2 : Dist τ2Kρ[x 7→ x̄](B)) d(EJΓ ⊢ e1 : Dist τ1Kρ)

where B is measurable.

Unlike the discrete case, the fact that the denotation is well-defined is less obvious. In par-

ticular, we need to show that the function

x̄ 7→ EJΓ, x : τ1 ⊢ e2 : Dist τ2Kρ[x 7→ x̄](B)

is measurable for any measurable B so that we can integrate it. We sketch out a solution that

shows the denotation function EJΓ ⊢ e : τK : VJΓK → VJτK is measurable, where VJΓK is the

product of all the types it contains.1

Sketch 1. We can proceed by induction on the typing derivation. In the bind case, we can con-

clude from our induction hypothesis that EJΓ, x : τ1 ⊢ e2K : VJΓ × τ1K → VJτ2K is measurable.

Indeed, we actually have a probability kernel (x̄, B) 7→ EJΓ, x : τ1 ⊢ e2 : Dist τ2Kρ[x 7→ x̄](B).

It is measurable for fixed measurable B and is a measure for fixed x̄. Finally, recall that the

integral of a probability kernel with respect to a measure yields another measure. Putting all

of this together, we conclude that the denotation of bind is well-defined.

The discussion above suggests that we should work in the category of measurable spaces

to get an induction hypothesis that allows us to conclude that our environments are mea-

1VJΓ = x1 : τ1, . . . , xn : τnK ∼= VJτ1K × · · · × VJτnK
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surable. However, it is well known that the category of measurable spaces is not Cartesian

closed [5]. Hence, we will not be able to extend the language with higher-order functions. It is

also unclear how to derive order-theoretic structure to support (least) fixed-points. Toronto et

al. show how to add recursion in this setting, but model it operationally [111]. Moreover, un-

like the finite discrete case, it is unclear how to implement a sampler for all continuous distri-

butions on a Turing machine because there are a countable number of Turing machine config-

urations, but an uncountable number of continuous distributions.

3.2 Semantic Constructs

We assume the reader is familiar with denotational semantics as presented in standard texts

(e.g., as in Gunter [45] and Winskel [118]), including constructs such as complete partials or-

ders (CPOs). Thus, we proceed directly to topological domains, an alternative theory of do-

mains, following Battenfeld et al.’s introduction [11].2

A topological domain captures the structure necessary to support Type-2 computability

as well as to take (least) fixed-points. Unlike a CPO, a topological domain in general does

not carry the Scott topology, and hence, does not consider the partial order primary. Instead,

topological domains start with the topology as primary and derive the order. The main issue

is ensuring that directed chains in the resulting order have least upper bounds.

Recall that we can convert a topological space into a preordered set via the specialization

preorder, which orders x ⊑ y if every open set that contains x also contains y. We write S to

convert a topological space into a preordered set. Intuitively, x ⊑ y if x contains less informa-

tion than y. For a computable metric space, we can always find an open ball that separates

2We also refer the reader to Battenfeld’s dissertation [8].

48



two distinct points x and y (because the distance between two distinct points is positive).

Hence, the specialization preorder of a computable metric space always gives the discrete or-

der (i.e., information ordering), and hence degenerately, a CPO. For example, the specializa-

tion preorder of the computable metric space (R, d,Q) is discrete.

Topological domain theory starts with the Cartesian closed category of qcb0 spaces (see

Section 2.2.3). A qcb0 space is called a topological predomain (abbreviated TP) if every as-

cending chain (xi)i∈N (with respect to the specialization preorder ⊑) has an upper bound x

such that (xi)i∈N → x (with respect to its topology) [11, Defn. 5.1]. This definition ensures

that least upper bounds of increasing chains exist.

The following provides a useful characterization of qcb0 spaces. As a reminder, a topologi-

cal space (X,O(X)) is a monotone convergence space if its specialization order is a CPO and

every open is Scott open [11, Defn. 5.3].

Proposition 3.2.1 ([11, Prop. 5.4]). A qcb0 space is a topological predomain iff it is a mono-

tone convergence space.

Hence, we see that the Scott topology is in general finer than the topology associated with

a topological predomain.

Analogous to standard domain theory, call a topological predomain a topological domain

(abbreviated TD) if it has least element, written ⊥, under its specialization order [11, Defn.

5.6]. We can take the fixed-point of a continuous function f : D → D on a topological domain

D in the obvious way as ⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ . . . .

Proposition 3.2.2 ([11, Thm. 5.7]). Every continuous function f : D → D has a least fixed-

point.
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Category Objects Morphisms
CPO CPO continuous
CPPO pointed CPO continuous
CPO⊥! pointed CPO strict + continuous
TP TP continuous
TD TD continuous
TD⊥! TD strict + continuous

Figure 3.1: Summary of categories of domains.

CPO CPO⊥ CPO⊥! TP TD TD⊥!
D × E ✓+ ✓+ ✓+ ✓+ ✓+ ✓+
D ⇒ E ✓+ ✓+ ✓ ✓+ ✓+ ✓
D + E ✓+ ✓+
D ⊗ E ✓ ✓ ✓ ✓
D ⇒ E ✓ ✓+ ✓ ✓+
D ⊕ E ✓ ✓+ ✓ ✓+
D⊥ ✓ ✓ ✓ ✓ ✓ ✓

Figure 3.2: Summary of constructs on (pointed)CPOs and topological (pre)domains. The symbol ✓ indi-
cates that the construct exists and the symbol + additionally indicates that it corresponds to the appropri-
ate categorical construct.

Figure 3.1 summarizes the categories of domains we have available to give semantics. As

we might expect, a CPO is analogous to a topological predomain and a pointed CPO is analo-

gous to a topological domain. Moreover, as CPOs and topological (pre)domains contain much

the same categorical structure, we will overload the constructs to work with both CPOs and

topological domains. For example, we will write ⇒ to refer to both a continuous function be-

tween CPOs and a continuous function between topological domains. When it is ambiguous,

we will subscript the construct with the appropriate category. For instance, we write ⇒TD to

indicate the function space from TD.

Figure 3.2 summarizes their categorical structure. The results about CPOs are well known

(e.g., see Abramsky et al. [2]). The results about topological (pre)domains are summarized by
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Battenfeld et al. [11].3 We write ✓ to indicate that the construct exists and additionally +

to indicate that it corresponds to the appropriate categorical construct. We write D × E for

products (D ⊗ E for coalesced products), D ⇒ E for continuous functions (D ⇒ E for strict

continuous functions), and D + E for sums (D ⊕ E for coalesced sums). D⊥ lifts a topological

(pre)domain. In summary, topological (pre)domains possess virtually all the same categori-

cal structure as their CPO counterparts. Now, we recall the topological structure underlying

topological (pre)domains as it is not necessarily the Scott topology.

The sequentialization of a topology is the canonical topology associated with a topological

(pre)domain, similar to how the Scott topology is the canonical topology associated with a

CPO. As a reminder, a set U is called sequentially open if every sequence converging to x ∈ U

is eventually contained in U .4 A topology for which every open is sequentially open is called

sequential. Every topological space X has a sequentialization Seq(X) defined on the same

underlying set that adds all the sequentially open sets. Every countably based space (e.g., a

computable metric space) is sequential. We now recall the product and function spaces on

topological (pre)domains.5

Let D and E be two topological predomains and consider D × E. The underlying topology

is given by the sequentialization of the product topology of D and E (as in [11, Sec. 4]). One

can check that the specialization order gives the expected component-wise order.

Now, consider the function space D × E. The underlying topology is given by the sequen-

3For results on TP, see [11, Thm. 5.5]. For results on TD, see [11, Thm. 5.9]. For results on
TD⊥!, see [11, Thm. 6.1, Thm. 6.2, Prop. 6.4]

4The converse holds–if U is open, then a converging sequence by definition is eventually in U .

5Escardo et al. provide a more general introduction on how to create Cartesian closed categories of
topological spaces using probing maps, of which sequentialization is a special case [31].
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tialization of the compact open topology on D and E (as in [11, Sec. 4] and [10, Prop. 3.5]).

As a reminder, the compact open topology Cco(D,E) has subbasic sets

S(K,U) = {f ∈ C (D,E) | f(K) ⊆ U}

where K ⊆ D is compact and U ⊆ E is open. The specialization order gives the expected

pointwise ordering. In addition, we get that suprema are constructed pointwise by [10, Lem.

3.13]. The function space of a topological (pre)domain differs the most from its CPO counter-

part, so it is helpful to sketch out why the ordering on D ⇒ E is pointwise.

Sketch 2. We recall a few facts. First, observe that Sierpinski space (Section 2.2.3) S is se-

quential (it is finite). Second, for any sequential space X and arbitrary space Y , f : X → Y

is continuous iff f : X → Seq(Y ) is continuous. Thus, the collection of continuous functions

{f ∈ S → X | f continuous} coincides with {f ∈ S → Seq(X) | f continuous}. In par-

ticular, this implies that the specialization ordering on X and Seq(X) are the same. Third,

observe that the specialization ordering on the compact open topology is pointwise. Fourth

and finally, recall that the function space on D ⇒ E is given by the sequentialization of the

compact open topology. Putting this together, we get that D ⇒ E also has pointwise order-

ing.

We provide some examples of topological (pre)domains and comment on their relation to

ordinary CPOs.

1. The naturals N with discrete topology is a topological predomain with discrete special-
ization order. The Scott topology on the resulting CPO is discrete, and hence, coin-
cides.

2. The reals R with Euclidean topology form a topological predomain with discrete order
(in particular, it is Hausdorff), but the Scott topology of (R,⊑Discrete) is discrete.
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Function Type
const(d) = e 7→ d D ⇒ (E ⇒ D)
lift(f) = ⊥D 7→ ⊥E , d 7→ f(d) (D ⇒ E)⇒ (D⊥ ⇒ E)
π1(d, e) = d D × E ⇒ D
π2(d, e) = e D × E ⇒ E
⟨f, g⟩ = d 7→ (f(d), g(d)) (D ⇒ E)× (D ⇒ F )⇒ (D ⇒ E × F )
uncurry(f) = (d, e) 7→ f(d)(e) (D ⇒ E ⇒ F )⇒ (D × E ⇒ F )
curry(f) = d, e 7→ f(d, e) (D ⇒ E ⇒ F )⇒ (D × E ⇒ F )
apply(f, d) = f(d) (D ⇒ E ×D)⇒ E
fix(f) =

⊔
n f

n(⊥D) (D ⇒ D)⇒ D

Figure 3.3: Summary of operations.

3. The interval [0, 1] with lower topology, i.e., O([0, 1]) = {(a, 1] | a ∈ [0, 1)} ∪ {[0, 1]} is
a topological domain with order ≤. The Scott topology gives the lower topology and so
the two coincide.

Now that we have some base examples, we can build some additional topological pre(domains

using the constructs from Figure 3.2.

1. Let L(X,O(X)) = (⌊X⌋∪⊥,O(⌊X⌋)∪{⌊X⌋∪⊥}. That is, it adds a ⊥ element and a sin-
gle open set ⌊X⌋ ∪ ⊥, while tagging all of X via ⌊X⌋ to distinguish ⊥. This corresponds
to lifting a topological predomain D via D⊥.

2. N×CPO N ∼= N×TP N.

3. The function space R ⇒TP R gives the continuous functions with respect to the usual
Euclidean topology. In contrast, the Scott continuous functions R ⇒CPO R contain all
functions.

Figure 3.3 summarizes the functions (in the appropriate categories) we will use throughout

the semantics. They are all standard and provided for reference.

3.3 Towards Semantics

In Chapter 4, I argue that by considering Type-2 computable distributions, we can support fa-

miliar language constructs, provide standard continuous reasoning principles, and realize pro-

gram denotations as (Type-2) computable algorithms. All of the theory related to computable
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distributions and their connections with domain theory that I will use has appeared at one

point or another in the literature. Hence, my contribution is simply one of synthesizing these

results in the context of a high-level probabilistic modeling language. Indeed, the intuitive

reason for why paying attention to computability can address semantic issues for expressive

probabilistic languages can be summarized by the motto: “Turing-complete probabilistic mod-

eling languages express computable distributions.” Of course, in hindsight, the motto is rather

tautological!
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4
An Application of Computable Distributions to

the Semantics of Probabilistic Programming

Languages

In this chapter, we describe a core probabilistic language called λCD that extends a PCF-

like language with distributions and give λCD two semantics. The first semantics is based on

topological domains whereas the second semantics is based on CPOs. Compared to the second
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semantics, the first is cleaner because all the structure we need is captured categorically. The

second semantics relies on an auxiliary argument involving the computability of environment

lookup (see A.6.1). I would like to thank Mitch Wand for pointing out this gap in the presen-

tation of the CPO semantics. Nevertheless, in light of our motto, it is still interesting to study

how to extend a standard CPO model of PCF with distributions.

In each semantics, distributions will be assigned both a sampling interpretation and distri-

butional interpretation. The distributional interpretation uses valuations, a topological variant

of a distribution, instead of measures. Consequently, λCD will be restricted to distributions

on topological spaces. Nevertheless, this includes spaces of practical interest such as reals and

countable products of topological spaces. What we gain is that we can reason about proba-

bilistic programs using the distributional semantics (see Section 4.6) and also faithfully im-

plement the corresponding sampling semantics (see Section 4.5). Moreover, the restriction

enables both semantics to support language features such as recursion and higher-order func-

tions in a largely standard manner.

4.1 A Core Language

The language λCD extends a PCF-like language with reals and distributions. We present the

full syntax below for completeness.

τ ::= Nat | τ → τ | τ × τ | Real | Samp τ

e ::= x | n | nop e | λx. e | e e | if0 e then e else e | µx. e

| (e, e) | fst e | snd e

| r | ropn(e1, . . . , en) | dist | return e | x← e ; e
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The first line of the expression syntax gives standard PCF-like expressions. For example, the

syntax nop e corresponds to primitive operations on naturals (e.g., successor and predecessor).

Because we are being somewhat vague about which primitive operations nop on naturals are

present in λCD and also omit booleans, we will refer to the fragment given in the first line of

the expression syntax as PCF-like. The second line of the expression syntax adds pairs to the

PCF-like fragment.

The third line of the expression syntax adds constants for reals r and application of primi-

tive real functions ropn(e1, . . . , en), and the constants dist represent primitive distributions on

computable metric spaces. The expressions return e and x ← e ; e correspond to return and

bind respectively in an appropriate probability monad.

The constants for reals and distributions can be given explicitly by their names (recall Sec-

tion 2.2.3) because they are elements of the appropriate represented spaces. More concretely,

if δR : 2ω ⇀ R is the fast Cauchy representation of a real, then the constant r in λCD is a

bit-stream such that r ∈ dom(δR). In other words, constant reals and distributions can be

named by bit-streams. Note that we do not need to restrict the constant reals or distributions

present in λCD to be Type-2 computable. However, in a practical setting, we would restrict

the constants provided by the language to be Type-2 computable so that they can be repre-

sented by an algorithm that computes their name.

Like PCF, λCD is a typed language. In addition to standard types, λCD includes the type

of reals Real and the type of distributions Samp τ . Figure 4.1 summarizes the type-system for

λCD. The expression typing judgement Γ ⊢ e : τ is parameterized by a context Ψ (omitted in

the rules), which contains the types of primitive distributions and functions. The typing rules

are largely standard.
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⊢D τ Well-formed distribution type

⊢D Nat ⊢D Real
⊢D τ1 ⊢D τ2

⊢D τ1 × τ2

Γ ⊢ e : τ Expression typing judgement

Γ(x) = τ

Γ ⊢ x : τ Γ ⊢ n : Nat
Ψ(nop) = Nat→ Nat Γ ⊢ e : Nat

Γ ⊢ nop e : Nat

Ψ(ropn) = τ1 × · · · × τn → τ Γ ⊢ ei : τi for 1 ≤ i ≤ n

Γ ⊢ ropn(e1, . . . , en) : τ

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

Γ ⊢ e1 : Nat Γ ⊢ e2, e3 : τ

Γ ⊢ n : if0 e1 then e2 else e3 : τ

Γ, x : τ ⊢ e : τ

Γ ⊢ µx. e : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2 Γ ⊢ r : Real

Ψ(dist) = Samp τ ⊢D τ

Γ ⊢ dist : Samp τ

Γ ⊢ e : τ ⊢D τ

Γ ⊢ return e : Samp τ

Γ ⊢ e1 : Samp τ1 Γ, x : τ1 ⊢ e2 : Samp τ2 ⊢D τ1, τ2

Γ ⊢ x← e1 ; e2 : Samp τ2

Figure 4.1: The type-system for λCD. The expression typing judgement is parameterized by a context Ψ,
which contains that types of primitive distributions and functions.
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For expressions that operate on distributions, the judgement ⊢D τ additionally enforces

that the involved types are well-formed. The distribution type Samp τ is well-formed if the

space denoted by τ supports the operations required of a computable metric space. This in-

cludes the natural type Nat, the real type Real, and products of well-formed types τ1 × τ2.1

4.2 Distribution Constructions

In this section, we gather results about valuations and integration. Our goal is to present

these results in a form amenable for giving the semantics of λCD, as they have often appeared

in the literature under a different guise (e.g., to study Type-2 computability).

4.2.1 Valuations

Let X be a topological space. A valuation ν : O(X) → [0, 1] is a function that assigns to

each open set of a topological space a probability, such that it is strict (ν(∅) = 0), monotone

(ν(U) ≤ ν(V ) for U ⊆ V ), and modular (ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ) for every

open U and V ). A valuation shares many of the same properties as a measure, and hence, can

be seen as a topological variation of distribution. Notably, unlike measures, valuations are not

required to satisfy countable additivity.

However, every Borel measure µ can be restricted to the lattice of opens, written µ|O(X),

resulting in an ω-continuous valuation. As a reminder, a valuation ν is called ω-continuous if

ν(
∪

n∈N Vn) = supn∈N ν(Vn) for (Vn)n∈N an increasing sequence of opens. Hence, the count-

able additivity of µ encodes the ω-continuous property. Indeed, there are many connections

1We can also support distributions on distributions, etc., but restrict our attention to ground types
for simplicity.
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between Borel measures, valuations, and Type-2 computable distributions.

Let O⊆(X) = (O(X),⊆) be the lattice of opens (and hence a CPO) of a topological space

X ordered by subset inclusion. Let [0, 1]↑ ≜ ([0, 1],≤) be the interval [0, 1] ordered by ≤. We

have the following relationships between O⊆(X) and [0, 1]↑ as CPOs and represented spaces

(and hence topological domains):

Proposition 4.2.1.

1. [0, 1]↑ ∼= ([0, 1], δ<) where δ< is a representation that induces the lower topology2 and

2. O⊆(X) ∼= C (X,S) when X is an admissible represented space (see Schröder [102, Thm.
3.3] and its proof).3

The function space between O⊆(X) and [0, 1]↑ is indicative of the type of a distribution.

Proposition 4.2.2. Let (X,O(X)) be a topological space.

1. Every Borel measure µ on X can be restricted to an ω-continuous valuation µ|O(X) :

[O⊆(X) ⇒CPO [0, 1]↑] (see Schröder [102, Sec. 3.1]). Moreover, µ is uniquely deter-
mined by its restriction to the opens µ|O(X).4

2. When X is countably based, [O⊆(X)⇒CPO [0, 1]↑] ∼= C (O(X), [0, 1]<) (see Schroder [102,
Sec. 3.1, Thm 3.5, Cor. 3.5]).

3. When X is countably based, [O⊆(X)⇒CPO [0, 1]↑] ∼= [O⊆(X)⇒TD [0, 1]↑].5

2We saw this as an example previously in Section 3.2.

3Alternatively, recall that O(X) ∼= C (X, S). As X is an admissible represented space, it is sequen-
tially generated [31] and hence also compactly generated [31]. Hence, C (X, S) ∼= Seq(Cco(X, S)),
which can be shown to carry the Scott topology (see [Prop. 3.7][10]).

4Note that the ω-continuous condition encodes what it means for a function to be ω-Scott con-
tinuous, i.e., an ω-CPO continuous function. The second part follows by an application of the π-λ
theorem.

5Recall that every ω-continuous pointed CPO with its Scott topology coincides with a topological
domain [11]. The least element is the valuation that maps every open set to 0.
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In light of proposition 4.2.2, we will interchangeably use Borel distributions and valuations.

As we will further restrict our attention to distributions on computable metric spaces (and

hence countably based spaces) in λCD, proposition 4.2.2 gives three equivalent views of a val-

uation as (1) a CPO continuous function, (2) a continuous map between represented spaces,

and (3) a continuous function between topological domains. (1) and (3) can be used to give

semantics. (2) indicates that there is an associated theory of effectivity on valuations that we

can take advantage of. Now that we have finished recalling some properties of valuations, we

will continue to integration.

4.2.2 Integration

Let X be a represented space and µ ∈ M1(X), where M1(X) is the collection of Borel mea-

sures on X that have total measure 1.

Proposition 4.2.3. The integral of a lower semi-continuous function f ∈ C (X, [0, 1]<) with

respect to a Borel measure µ

∫
: C (X, [0, 1]<)×M1(X)→ [0, 1]<

is lower semi-continuous (see [102, Prop. 3.6]). In fact, it is even lower semi-computable

(see [102, Prop. 3.6] and [51, Prop. 4.3.1]).

As a reminder, (Lebesgue) integration of a non-negative function f with respect to a mea-

sure µ is defined as ∫
f dµ ≜ sup{

∫
s dµ | s ≤ f, simple}
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where a simple function s is of the form

s(x) =
N∑
i=1

ai1Bi(·)

for Bi measurable and ∫
s dµ =

N∑
i=1

aiµ(Bi) .

The idea is to define the integral of a non-negative function f by approximating it from below

by simple functions, i.e., finite sums of step functions. In particular, we can define an integral

of a simple function as a finite sum. Once we have done so, the key idea is to show that tak-

ing the limit of the integral of simple functions is equivalent to the integral of the limit of the

simple functions.

lim
n→∞

∫
fn dµ =

∫
lim

n→∞
fn dµ

In other words, we show that the limit commutes with the integration operator. This is known

as monotone convergence in measure theory. In an order theoretic setting, it corresponds to

Scott-continuity of the integration operator.

Remark (Notation). We will use the same symbol
∫

for integrating with respect to an ω-

continuous valuation. The overloading of notation is justified because every Borel measure

µ ∈ M1(X) on a space X is uniquely determined by its restriction to an ω-continuous valua-

tion µ|O(X) (recall proposition 4.2.2).

Remark (Countably based spaces). Integration on countably based spaces is nicer compared

to integration on more general spaces. Let σ close a collection of sets under the σ-algebra con-

ditions. Let X and Y be two topological spaces. It is well known that σ(O(X) ⊗ O(Y )) ̸=
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σ(O(X)) × σ(O(Y )), where the left forms the product σ-algebra via ⊗ after closing each com-

ponent separately while the right closes the product topology. However, the left is equivalent

to the right when one of X or Y is countably based. Consequently, when restricted to count-

ably based spaces, we can rely on standard measure-theoretic integration theorems (e.g., Fu-

bini) without having to show that an analogous result holds on valuations.

4.2.3 Semantic Constructions

Now, we combine the results about valuations and integration to define a probability monad.

The constructions we define here will be used later in the semantics of λCD. We start with

constructions for a sampling interpretation.

Define an (endo)functor S that sends a countably based topological predomain D to a sam-

pler on D and a morphism to one that composes with the underlying sampler. Then, S(D) is

a sampler producing values in D.

Proposition 4.2.4. The functor S is well-defined.

S(D) ≜ 2ω ⇒ D⊥

S(f : D ⇒ E) ≜ s 7→ lift(f) ◦ s .

Proof. Let D be a countably based topological predomain. First, 2ω ⇒ D⊥ is clearly a topo-

logical predomain (it even has least element · 7→ ⊥), so we check that it is countably based.

Recall that if X and Y are countably based spaces where X is additionally locally compact,

then the space of continuous functions from X to Y with compact-open topology is countably

based. 2ω is compact and hence locally compact, so 2ω ⇒ D⊥ with compact open topology is
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countably based. Finally, in this case, recall the function space ⇒ gives the sequentialization

of the compact open topology (see Section 3.2) and a countably based space is sequential, so

the result follows.

Second, S(f) is clearly well-defined. Third, we check the functor axioms. The identity

clearly holds and associativity follows by the following calculation.

S(g ◦ f)(s) = lift(g ◦ f) ◦ s

= lift(g) ◦ lift(f) ◦ s

= lift(g) ◦ S(f)

= S(g) ◦ S(f)

Next, we define some operations on samplers.

det : X ⇒ S(X)⊥

det = x 7→ lift(const(x))

creates a sampler that ignores its input bit-randomness and always returns x. The function

split : 2ω ⇒ 2ω × 2ω

split = u 7→ (ue, uo)

splits an input bit-stream u into the bit-streams indexed by the even indices ue and the odd
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indices uo. The function

samp : S(X)⇒ (X ⇒ S(Y ))⇒ S(Y )

samp = s, f 7→ lift(uncurry(f)) ◦ lift(⟨s ◦ π1, π2⟩) ◦ split

splits the input bit-randomness and runs the sampler s on one of the bit-streams obtained by

splitting to produce a value. That value is fed to f , which in turn produces a sampler that is

run on the other bit-stream obtained by splitting.

We may recognize det and samp as return and bind respectively in a sampling monad. We

will not do that here, opting instead to construct a probability monad and deriving the associ-

ated laws after relating the sampling functions (see Section 4.3).

Define the (endo)functor P on countably based topological predomains that sends an ob-

ject D to the space of valuations on D and a morphism to one that computes the pushfor-

ward.

Proposition 4.2.5. The functor P is well-defined.

P(D) ≜ O(D)⇒ [0, 1]↑

P(f : D ⇒ E) ≜ µ 7→ µ ◦ f−1 .

Proof. First, we have that P(D) is a countably based represented space by Schröder [102,

Cor. 3.5] and hence topological predomain by proposition 4.2.2. Second, we verify that the

pushforward is continuous. Again as a consequence of proposition 4.2.2, we can check that the
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pushforward preserves directed suprema. Let (Un)n∈N an increasing sequence of opens.

∪
n

P(f)(µ)(Un) =
∪
n

(µ ◦ f−1)(Un)

= (µ ◦ f−1)(
∪
n

Un) (continuity)

= P(f)(µ)(
∪
n

Un)

Third, we need to check the functor laws. Clearly, P(id)(µ) = µ. Finally, we check functor

composition.

P(g ◦ f)(µ) = µ ◦ (g ◦ f)−1

= (µ ◦ f−1) ◦ g−1

= P(g)(P(f)(µ))

= (P(g) ◦P(f))(µ)

We can construct a probability monad using the functor P.

Proposition 4.2.6. The triple (P, η,≻♭) is a monad, where

η(x)(U) ≜ 1U (x)

(µ ≻♭ f)(U) ≜
∫

fU dµ for fU (·) = f(·)(U).

Proof. First, the step function given by η(x) is a valuation. Second, observe that uncurry(f)
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is a probability kernel—uncurry(f)(·, U) is lower semi-continuous for any open U so it is mea-

surable and uncurry(f)(x, ·) for any x ∈ X is a valuation. Hence, U 7→
∫
fU dµ is the in-

tegral of a probability kernel, which produces a (Borel) measure that can be restricted to an

ω-continuous valuation. Third, we check the monad laws. Clearly, the left and right identity

laws hold. To show associativity, we first compute ((µ ≻♭ f) ≻♭ g) and µ ≻♭ (x 7→ fx ≻♭ g),

where µ ∈P(X), f : X ⇒P(Y ), and g : Y ⇒P(Z). For the former, we have

((µ ≻♭ f) ≻♭ g)(U) =

∫
Y

gU d(µ ≻♭ f)

=

∫
Y

gU dν ,

where

ν = V 7→
∫
x

fV dµ .

For the latter, we have

µ ≻♭ (x 7→ f(x) ≻♭ g)(U) =

∫
X

(x 7→ f(x) ≻♭ g)U dµ

=

∫
X

x 7→
∫
Y

gU d(f(x)) dµ .

Thus, we need to show ∫
Y

gU dν =

∫
X

x 7→
∫
Y

gU d(f(x)) dµ

for some open U . We can use Monotone Convergence. Let (gnU )n∈N be a sequence of simple

functions that converges to gU pointwise. Write the n-th simple function as
∑

k a
n
k1An

k
(·).
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Then, ∫
Y

gU dν =
∑
k

ak(

∫
X

fAk
dµ)

and

∫
X

x 7→
∫

gU d(f(x))dµ =

∫
X

x 7→
∑
k

akf(x)(Ak) dµ

=

∫
X

x 7→
∑
k

akfAk
(x) dµ

=
∑
k

ak

∫
X

fAk
dµ

where the last equality holds by linearity of the integral. This shows that the integrals are

equivalent for each gn and so the integrals are equal by Monotone Convergence.

4.3 A Topological Domain Semantics

We are now ready to give a semantics to λCD based on topological domains using the con-

structs from Section 4.2.

4.3.1 Interpretation of Types

The interpretation of types VJτK interprets a type τ as a topological domain and is defined

by induction on types. We summarize the interpretation of types VJτK below, which follows a
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call-by-name evaluation strategy.

VJNatK ≜ (N, dDiscrete,N)⊥

VJτ1 × τ2K ≜ (VJτ1K× VJτ2K)⊥
VJτ1 → τ2K ≜ (VJτ1K⇒ VJτ2K)⊥
VJRealK ≜ (R, dEuclid,Q)⊥

VJSamp τK ≜ Σs∈S(VJτK) pshτ (s) where pshτ (s) ∈P(VJτK)
The interpretation of standard types is similar to what one might expect from a standard

CPO call-by-name interpretation. Indeed, the only difference is that we replace CPO con-

structs with their topological domain counterparts. In the interpretation of the types Nat and

Real, we have explicitly written out the topologies (as a computable metric space). Combin-

ing the sampling functor S with the probability monad P gives the interpretation of a dis-

tribution type Samp τ . The function pshτ computes the pushforward and relates the sampler

with the valuation on a space denoted by τ . Note that the well-formed distribution judgement

⊢D τ ensures that the probability monad P is applied to only the countably based topological

(pre)domains.

4.3.2 Expression Denotation

The expression denotation function EJΓ ⊢ e : τK : VJΓK ⇒ VJτK where is defined by in-

duction on the typing derivation and is summarized in Figure 4.2. It is parameterized by a

global environment Υ that interprets constant reals r, constant primitive distributions dist,

and primitive functions (nop and ropn). The global environment Υ should be well-formed. As
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EJxKρ ≜ ρ(x)

EJnKρ ≜ Υ(n)

EJnop eKρ ≜ Υ(nop)(EJeKρ)
EJλx. eKρ ≜ ⌊x̄ 7→ EJeKρ[x 7→ x̄]⌋
EJe1 e2Kρ ≜ unlift(EJe1Kρ)(EJe2Kρ)

EJif0 e1 then e2 else e3Kρ ≜


EJe2Kρ if EJe1Kρ = 0̄

EJe3Kρ if EJe1Kρ = n̄ for n̄ ̸= 0̄

⊥ otherwise
EJµx. eKρ ≜ fix(x̄ 7→ EJeKρ[x 7→ x̄])

EJ(e1, e2)Kρ ≜ ⌊(EJe1Kρ, EJe2Kρ)⌋
EJfst eKρ ≜ π1(unlift(EJeKρ))
EJsnd eKρ ≜ π2(unlift(EJeKρ))
EJrKρ ≜ Υ(r)

EJropn(e1, . . . , en)Kρ ≜ Υ(ropn)(EJe1Kρ, . . . , EJenKρ)
EJdistKρ ≜ Υ(dist)

EJΓ ⊢ return e : Samp τKρ ≜ (det(EJeKρ), η(EJeKρ))
EJΓ ⊢ x← e1 ; e2 : Samp τ2Kρ = (samp(π1(EJe1Kρ))(x̄ 7→ π1(EJe2Kρ[x 7→ x̄])

, π2(EJe1Kρ) ≻♭ x̄ 7→ π2(EJe2Kρ[x 7→ x̄]))

Figure 4.2: The denotational semantics of λCD. We write n̄ to be the semantic value corresponding to
the syntax n.

shorthand, we will put a bar over constants to represent the semantic value obtained from a

global environment lookup (e.g., Υ(n) = n̄) to distinguish the semantic value from the syntax.

• For any nop ∈ dom(Υ), the corresponding semantic function ¯nop is strict and com-
putable on its domain.

• For any r ∈ dom(Υ), r ∈ dom(δR) where δR is the representation of reals. In other
words, r should be the name of a real r̄.

• For any dist ∈ dom(Υ), dist ∈ dom(δ(2ω⇒X)×(O(X)⇒[0,1]↑)) where δ(2ω⇒X)×(O(X)⇒[0,1]↑)

is the representation of a pair of a sampler and valuation on the space X. In other
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words, dist should be the name of a pair dist of a sampler and the corresponding dis-
tribution.

• For any ropn ∈ dom(Υ), the corresponding semantic function ¯ropn is strict and continu-
ous on its domain.

Now, we will walk through the expression denotation function. As the denotation of expres-

sions corresponding to the PCF-like fragment are standard, we will focus on the constructs

λCD introduces. The denotation of a constant real r is a global environment lookup.

EJrKρ ≜ Υ(r)

As a reminder, if r gives the name of the corresponding semantic element, written r̄, then a

global environment lookup corresponds to applying the representation δR (i.e., Υ(r) = δR(r) =

r̄). The denotation of a primitive function on reals ropn(e1, . . . , en) applies the semantic func-

tion Υ(ropn) to the denotation of each of its arguments.

EJropn(e1, . . . , en)Kρ ≜ Υ(ropn)(EJe1Kρ, . . . , EJenKρ)
By well-formedness of the global environment Υ, Υ(ropn) denotes a strict function. Hence, it

produces ⊥ whenever any of its arguments denotes ⊥. At the level of Oracle Turing machines,

this means that Υ(ropn) diverges when any of its arguments diverges. Next, we will go over

the denotation of distribution constructs in λCD.

The denotation of a constant primitive distribution dist is a global environment lookup. As

a reminder, the interpretation of Samp τ is a pair of a sampler and valuation so the lookup

71



should also produce a pair.

EJdistKρ ≜ Υ(dist)

The denotation of return e produces a pair of a sampler that ignores the input bit-randomness

and returns EJeKρ, and a point mass valuation centered at EJeKρ.

EJΓ ⊢ return e : Samp τKρ ≜ (det(EJeKρ), η(EJeKρ))
The meaning of x← e1 ; e2 also gives a sampler and a valuation.

EJΓ ⊢ x← e1 ; e2 : Samp τ2Kρ =

(samp(π1(EJe1Kρ))(x̄ 7→ π1(EJe2Kρ[x 7→ x̄]),

π2(EJe1Kρ) ≻♭ x̄ 7→ π2(EJe2Kρ[x 7→ x̄]))

Under the sampling view, we use samp to compose the sampler obtained by π1(EJe1Kρ) with

the function x̄ 7→ π1(EJe2Kρ[x 7→ x̄]). Under the valuation component, we reweigh x̄ 7→

π2(EJe2Kρ[x 7→ x̄]) according to the valuation π2(EJe1Kρ) using monad bind ≻♭ from P.

Note that the sampling component and the valuation component were independent of each

other in each of the distribution expressions. Hence, we could have given two different seman-

tics and related them. However, in the current form, we will obtain that the valuation is the

pushforward along the sampler by showing that expression denotation function is well-defined.

The structure of the argument showing that the expression denotation function is well-

defined is virtually identical to the argument for showing that the CPO semantics of PCF
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is well-defined. The interesting cases correspond to return e and x ← e1 ; e2 where we need

to relate the sampling component with the valuation it denotes. We accomplish this with an

auxiliary lemma.

Lemma 4.3.1 (Push). Let X and Y be countably based represented spaces.

1. psh(det(x)) = η(x) for any x ∈ X.

2. psh(samp(s)(f)) = psh(s) ≻♭ v 7→ psh(f(v)) for any s : S(X) and f : X → S(Y ).

Proof. The first claim is straightforward.

psh(det(x)) = psh(lift(const(x)))

= U 7→ lift(µiid)({u | x ∈ U})

= U 7→ 1U (x)

= η(x)

The second item is slightly more involved. Let s̄ = lift(⟨s◦π1, π2⟩)◦split and f̄ = lift(uncurry(f))

so that samp(s)(f) = f̄ ◦ s̄.

psh(samp(s)(f)) = psh(f̄ ◦ s̄)

= U 7→ lift(µiid)(s̄
−1(f̄−1(U)))

= U 7→
∫
(v, u) 7→ 1f̄−1(U)((v, u)) d(psh(s̄))

= U 7→
∫
(v, u) 7→ 1f̄−1(U)((v, u)) d(psh(s)⊗ lift(µiid))

= U 7→
∫

v 7→ lift(µiid)(f̄(v))
−1(U) d(psh(s))

= psh(s) ≻♭ psh(f)
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Crucially, we need to use the fact that split produces independent bit-streams.

Now, we check that the denotation is well-defined.

Lemma 4.3.2. Let Υ be a well-formed global environment. If Γ ⊢ e : τ , then EJeK : VJΓK ⇒
VJτK
Proof. By induction on the derivation of Γ ⊢ e : τ . The cases involving the PCF-like fragment

are identical to the CPO proof. The cases involving constant reals and distributions, Γ ⊢ r :

Real and Γ ⊢ dist : Samp τ follow from continuity of const and well-formedness of Υ.

Case 1 (Γ ⊢ ropn(e1, . . . , en) : Real). By definition,

EJropn(e1, . . . , en)K = apply ◦⟨lift(Υ(ropn)), ⟨EJe1K, . . . , EJenK⟩⟩ ,
which is continuous if we can show EJeiK is continuous for 1 ≤ i ≤ n. This follows by the

induction hypothesis.

Case 2 (Γ ⊢ return e : Samp τ). By definition, EJreturn eK = ⟨lift(const) ◦ EJeK, η ◦ EJeK⟩,
which is continuous as EJeK is continuous by the induction hypothesis. The sampler is related

to the valuation by the push lemma 4.3.1.

Case 3 (Γ ⊢ x ← e1 ; e2 : Samp τ2). As in the other cases, we can write the denotation in

point-free form. We have EJx← e1 ; e2Kρ = (s, µ), where

s = apply ◦⟨const(samp), ⟨π1 ◦ EJe1K, uncurry(π1 ◦ EJe2K)⟩⟩
µ = apply ◦⟨const(≻♭), ⟨π2 ◦ EJe1K,uncurry(π2 ◦ EJe2K)⟩⟩ .
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By our induction hypothesis, we obtain that EJe1K : VJΓK ⇒ VJSamp τ1K and EJe2K : VJΓK ×
VJτ1K ⇒ VJτ2K. Thus, the denotation is well-defined as it is a composition of continuous func-

tions. As before, the sampler is related to the valuation by the push lemma 4.3.1.

Hence, the expression denotation function is well-defined. As we just saw, topological do-

mains provide all the necessary structure for giving semantics to a probabilistic programming

language extended with continuous distributions. Indeed, they even provide an associated

computability theory so we will later be able to implement the sampling semantics faith-

fully (Section 4.5). However, the tradeoff was that we restricted λCD to distributions on com-

putable metric spaces. Nevertheless, as we mentioned previously, this captures essentially all

spaces used in practice, including reals, (countable) products of computable metric spaces,

and distributions on distributions.

Remark (Primitive functions 1). In the setting with reals and continuous distributions, we will

need to be slightly more careful with the domains of primitive functions to ensure that they

are continuous with respect to the appropriate topologies. For instance, consider the functions

+1 : R → R that adds 1 to its argument and log : R+ → R. The former is a continuous

function that defined on all of R. The latter is a continuous function when restricted to the

subspace R+. Thus, we should model the former with the topological domain R ⇒ R⊥ and

the latter with the topological domain R+ ⇒ R⊥, where we equip the non-negative reals R+

with the subspace topology.

As our interpretation of types is given by induction on types, we will need additional types

(and primitives) in λCD to distinguish between these two domains if we hope to support such

primitives. More concretely, we could support a partial function such as log by adding the
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additional type Real+ that denotes the appropriate topological domain, a conversion function

nonnegToReal : Real+ → Real with the expected semantics, and another conversion function

realToNonneg : Real→ Real+ that diverges if called with a negative number.

Remark (Primitive functions 2). In addition to the previous remark on primitive functions, we

will also need to be slightly careful to note when the semantics of λCD primitives are differ-

ent from the “usual” semantics. For instance, consider the function < which we might assign

the type Real × Real → Bool. Notably, this relation is not decidable so it cannot have the

usual semantics. That is, it cannot return false when x ≥ y for some x, y ∈ R. Instead, the

semantics is as follows:

EJe1 < e2Kρ ≜



⌊1̄⌋ when EJe1Kρ < EJe2Kρ
⌊0̄⌋ when EJe1Kρ > EJe2Kρ
⊥ otherwise, i.e., when EJe1Kρ = EJe2Kρ

We can actually see that this is the correct semantics by trying to implement such a prim-

itive. Suppose instead that we have the primitives <1 : Real × Real → Unit and >1 :

Real× Real→ Unit, where the superscripts indicate that they are 1-sided tests. In particular,

these primitives correspond to the semi-decidability of < and > respectively—VJUnitK ∼= S.

Assuming that we additionally have a parallel or operation6, then the function < can be im-

plemented by running both <1 and >1 in parallel, matching on which computation produces a

value first. The case that both <1 and >1 diverge is when the arguments are equal.

6We will discuss the issues with implementing such an operation when we implement computable
distributions as a library in Haskell (Section 4.5).
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4.4 A Complete Partial Order Semantics

Given the motto “Turing-complete probabilistic programming languages express computable

distributions,” one natural attempt at giving λCD semantics would be to extend a standard

CPO model of PCF. In this section, we show how to give λCD a CPO semantics. Compared

to the previous semantics, we will not be able to derive all the required structure categorically.

Consequently, we will need to rely an auxiliary argument to recover that environment lookup

is continuous—perhaps surprisingly, this relies on an Oracle Turing machine argument, which

highlights the importance of considering computability.

4.4.1 Interpretation of Types

The interpretation of types VJτK interprets a type τ as a CPO and is defined by induction on

types. As a CPO in general does not carry the same topology as a computable metric space,

we will use an auxiliary type interpretation function MJ·K to denote the types that can be

endowed with a computable metric.

We write MJτK to associate a well-formed type (⊢D τ) with a computable metric space,

defined by induction on well-formed types.

MJNatK ≜ (N, dDiscrete,N)

MJRealK ≜ (R, dEuclid,Q)

MJτ1 × τ2K ≜ MJτ1K×MJτ2K
The interpretation of naturals and reals are standard. The interpretation of a product MJτ1 ×
τ2K forms the product of computable metric spaces MJτ1K and MJτ2K.
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Due to the coincidence of the CPO and topological domain interpretation of ω-continuous

valuations on countably based spaces (by proposition 4.2.2), we can still use the probability

monad P from Section 4.2 to interpret the valuation component of a distribution type in the

CPO semantics. However, samplers in the CPO 2ω ⇒CPO D⊥ are not necessarily continuous

topological domain maps. Nevertheless, they are measurable.7 Moreover, valuations can be re-

alized by continuous sampling functions. Hence, we can restrict the interpretation of samplers

as elements of the CPO 2ω ⇒CPO D⊥ to those that are continuous.

We summarize the interpretation of types below with a call-by-name evaluation strategy.

We use SM (as opposed to S for the topological domain) for the CPO type of samplers.

VJNatK ≜ Disc(N)⊥

VJτ1 × τ2K ≜ (VJτ1K× VJτ2K)⊥
VJτ1 → τ2K ≜ (VJτ1K⇒ VJτ2K)⊥
VJRealK ≜ Disc(R)⊥

VJSamp τK ≜ Σs∈SM (MJτK) pshτ (s)

The interpretation of types from the PCF-like fragment are standard. Recall that S applies

the specialization preorder and L lifts a topological space. Hence, Disc(N)⊥ ∼= S(L(MJNatK))
and Disc(R)⊥ ∼= S(L(MJRealK)). As before, we give both a sampling interpretation and a

valuation interpretation, related by the pushforward pshτ . Note that the use of MJ·K only

7It is sufficient to show that every subset of 2ω can be written as a countable intersection of open
sets (called G − δ sets). Let A be an arbitrary subset of 2ω and define [X] = X if there is an a ∈ A
such that a ∈ X and [X] = ∅ otherwise. Next, define a sequence (Bn)n∈N of sets as follows: B0 = [2ω],
B1 = [02ω] ∪ [12ω], B2 = [002ω] ∪ [012ω] ∪ [102ω] ∪ [112ω], and etc. Then, A = ∩n∈NBn.
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appears in the interpretation of the distribution type.

4.4.2 Expression Denotation

The expression denotation function EJΓ ⊢ e : τKρ : VJΓK⇒ VJτK is defined by induction on the

typing derivation. The denotation is parameterized by a global environment Υ that interprets

constants and primitive functions. As before, we enforce the same well-formedness conditions

on the global environment Υ. The structure of the semantics is identical to the topological

domain version (see Figure 4.2), except that all the functions we use are CPO functions this

time.

To relate the sampling component with the valuation component, we will again need a push

lemma.

Lemma 4.4.1 (Push 2). Let X and Y be computable metric spaces.

1. psh(det(x)) = η(x) for any x ∈ X.

2. Suppose s : SM (X) and f : X → SM (Y ) is continuous.8 Then, psh(samp(s)(f)) =

psh(s) ≻♭ v 7→ psh(f(v)).

Proof. The proof is similar to that of lemma 4.3.1. However, we need the extra condition that

f : X → SM (Y ) is continuous to conclude that f : X → SM (Y ) ∼= X × 2ω → Y⊥ is measurable.

To see this, observe that f(x, ·) : 2ω → Y⊥ is measurable for every x ∈ X, and hence takes the

form of a jointly measurable Carathéodory function9.

8An earlier version of this work missed the continuity condition.

9Let Z be a measurable space and let X and Y be topological spaces. A Carathéodory function
is a function f : X × Z → Y such that (1) f(x, ·) is measurable for any x ∈ X and (2) f(·, z) is
continuous for any z ∈ Z. Carathéodory functions are jointly measurable.
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Next, we show that the denotation is well-defined. However, as CPO continuous functions

do not coincide in general with topological domain continuous functions, our induction hy-

pothesis carries less structure. In particular, we will need to rely on an auxiliary argument

involving Oracle Turing machines that shows that environment lookup is continuous.

Proposition 4.4.2 (Environment lookup is computable). Let Γ, x : τx ⊢ e : τ , where VJτxK
and VJτK both denote represented spaces. Then,

x̄ 7→ EJeKρ[x 7→ x̄]

is computable as a map between represented spaces.

Intuitively, the proposition holds because environment lookup is computable. Hence, it is

continuous. Put another way, we can treat an environment lookup of the variable x as Turing

machine code for: “look at the tape named by x”. For now, we will walk through the argu-

ment that the denotation is well-defined first and then comment on proposition 4.4.2.

Lemma 4.4.3 (Denotation well-defined). If Γ ⊢ e : τ , then EJeK : VJΓK⇒ VJτK.
Proof. By induction on the typing derivation under the stronger induction hypothesis that

the samplers are continuous (as represented maps). We check the cases corresponding to Γ ⊢

return e : Samp τ and Γ ⊢ x← e1 ; e2 : Samp τ2.

Case 4 (Γ ⊢ return e : Samp τ). The definition of the sampler and valuation are clearly

well-defined. Applying lemma 4.4.1 completes this case.

Case 5 (Γ ⊢ x ← e1 ; e2 : Samp τ2). For this case, it is productive to address the sampler and

the valuation separately, and then relate the two.
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The denotation of the sampling component is samp(π1(EJe1Kρ))(x̄ 7→ π1(EJe2Kρ[x 7→ x̄])).

By the induction hypothesis, EJe1Kρ is continuous and EJe2Kρ[x 7→ x̄] is continuous for any x̄.

Moreover, by Proposition 4.4.2, the function EJe2Kρ[x 7→ x̄] is continuous. Hence, the result is

continuous by continuity of all the operations involved.

The denotation of the valuation component is π2(EJe1Kρ) ≻♭ x̄ 7→ π2(EJe2Kρ[x 7→ x̄]).

By the induction hypothesis, π2(EJe1Kρ) is an ω-continuous valuation. Also by the induction

hypothesis and Proposition 4.4.2, we have that x̄ 7→ π2(EJe2Kρ[x 7→ x̄]) : L(MJτ1K) ⇒CPO

VJSamp τ2K is a continuous map between represented spaces (i.e., is an element of the space

C (VJτ1K,C (O(VJτ2K), [0, 1]<))). Hence, we can apply ≻♭ and the denotation of the valuation

component is well-defined.

Finally, we need to show that the valuation is the pushforward along the sampler. Note

that the interpretation of sampling type L(MJτK) is not a computable metric space because it

is lifted. Observe that

∫
f dµ =

∫
f |O(X) dµ|O(X) + f(⊥)µ({⊥}) ,

where f : L(X)→ [0, 1]< and µ ∈P(L(X)). Hence, the result follows by the lemma 4.4.1 and

linearity of the integral.

The proof relies on an environment lookup argument for Oracle Turing machines. To make

this precise, we refer the reader to Appendix A. For now, we will sketch out the main idea.

Sketch 3. At a high-level, we need to show that the environment lookup map has a realizer.

Intuitively, if environments are represented as a collection of tapes indexed by variable names,
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then a variable x can be translated as Turing machine code for: “read from the tape indexed

by x”. Indeed, the execution of λCD can be simulated on an Oracle Turing machine—the

PCF-like fragment can be simulated using a standard translation of lambda terms to their

encodings on Turing machine tapes, while the constructs λCD introduces are all realizable by

an Oracle Turing machine by design. However, we still need to connect the Turing machine

level view to the denotational semantics. Towards this end, we can show (1) that the denota-

tional semantics is related to an operational semantics (via soundness and adequacy) and that

(2) the operational semantics can be simulated by an Oracle Turing machine. Combining the

two makes the connection between the denotational semantics and Oracle Turing machines

precise.

4.5 Computable Distributions as a Library

We now present a Haskell library (Figure 4.3) for expressing samplers that implements the

sampling semantics. In particular, the Haskell library does not assume reals or black box con-

tinuous distributions.

The module ALib encapsulates elements of a computable metric spaces. More concretely,

the type A τ models an element of a computable metric space can be read as an approxima-

tion by a sequence of values of type τ . For example, a computable real can be given the type

CReal ≜ A Rat, meaning it is a sequence of rationals that converges to a real. We form val-

ues of type A τ using approx, which requires us to check that the function we are coercing

describes a fast Cauchy sequence, and project out approximations using anth.

To form A τ , values of type τ should support the operations required of a computable met-

ric space. We can indicate the required operations using Haskell’s type-class mechanism.
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module ALib (CMetrizable(..), approx, anth) where

approx :: (Nat -> a) -> A a -- fast Cauchy sequence
anth :: A a -> Nat -> a -- project n-th approx.

class CMetrizable a where
enum :: [a] -- countable , dense subset
metric :: a -> a -> A Rat -- computable metric

newtype A a = A { getA :: Nat -> a }

module CDistLib (RandBits, Samp(..), asampler) where

import ALib

type RandBits = Nat -> Bool
newtype Samp a = Samp { getSamp :: RandBits -> a }

asampler :: (CMetrizable a) => (RandBits -> A a) -> Samp (A a)

instance Monad Samp where
...

Figure 4.3: A Haskell library interface for λCD.

class CMetrizable a where
enum :: [a]
metric :: a -> a -> A Rat

When we implement an instance of CMetrizable τ , we should check that the implementation

of enum enumerates a dense subset and metric computes a metric as a computable metric

space requires (see Section 2.2.2). Below, we give an instance of A Rat for computable reals.

instance CMetrizable Rat where
enum = 0 : [ toRational m / 2^n

| n <- [1..]
, m <- [-2^n * n..2^n * n]
, odd m || abs m > 2^n * (n-1) ]
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metric x y = A (\_ -> abs (x - y))

This instance enumerates the dyadic rationals (powers of 2), which are a dense subset of the

reals. Note that there are many other choices here for the dense enumeration.10 In this in-

stance, we can actually compute the metric as a dyadic rational, whereas a computable metric

requires the weaker condition that we can compute the metric as a computable real.

Next, we can use the module ALib to implement computable operations on commonly used

types. This reifies the computable primitives ropn(e1, . . . , en) from the core language as a li-

brary function. For example, a library for computable reals will contain the CMetrizable τ

instance implementation above and other computable functions. However, some operations

are not realizable (e.g., equality of reals) and so this module does not contain all operations

one may want to perform on reals.

module RealLib (Real, pi, (+), ...) where
import ALib

type Real = A Rat
instance CMetrizable Rat where

...

pi :: Real
(+) :: Real -> Real -> Real
-- etc.

The module CompDistLib contains the implementation of distributions. A sampler Samp α

is a function from a bit-stream (i.e., RandBits represented isomorphically as Nat -> Bool

instead of [Bool]) to values of type α.

type RandBits = Nat -> Bool
newtype Samp a = Samp { getSamp :: RandBits -> a }

10Algorithms that operate on computable metric spaces compute by enumeration so the algorithm
is sensitive to the choice of enumeration.
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We can implement an instance of the sampling monad by essentially translating det and samp

from our semantics into Haskell.

instance Monad Samp where
return x = Samp (const x)
(>>=) s f = Samp ((uncurry (getSamp . f)) . (pair (getSamp s

. fst) snd) . split)
where pair f g = \x -> (f x, g x)

split = pair even odd
even u = (\n -> u (2 * n))
odd u = (\n -> u (2 * n + 1))

As expected, return corresponds to a sampler that ignores its input randomness and >>=

corresponds to a composition of samplers. The module CompDistLib provides the function

sampler to coerce an arbitrary Haskell function of the appropriate type into a value of type

Samp α.

asampler :: (CMetrizable a) => (RandBits -> A a) -> Samp (A a)
asampler = Samp

We should call sampler only on sampling functions realizing Type-2 computable sampling

algorithms.

This concludes the implementation of the module CompDistLib, and thus, a Haskell library

for expressing computable distributions. We emphasize that it does not rely on any blackbox

primitives.11

4.6 Examples

In this section, we will use the Haskell library to give examples of expressible distributions.

We will use the expression denotation function EJ·Kρ defined previously (both the topological

11However, we will need a unique exception to compute the modulus of continuity (Section 4.7.2).
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domain and CPO version work) to check the denotations of our programs which implement

samplers. For the most part, will drop the sampling component of the denotation and concern

ourselves with just the valuation component.

4.6.1 Discrete Distribution

Consider the encoding of a geometric distribution with bias 1/2, which returns the number

of fair Bernoulli trials until a success. The distribution stdBernoulli denotes a Bernoulli

distribution with bias 1/2.

stdGeometric :: Samp Nat
stdGeometric = do

b <- stdBernoulli
if b then return 1

else stdGeometric >>= return . (\n -> n + 1)

Let µB be an unbiased Bernoulli distribution and µn correspond to n un-foldings of the ex-

pression stdGeometric.

EJstdGeometricKρ(U) = sup
n

∫
v 7→



1U (1) when v = true

∫
w 7→ 1U (w + 1)dµn otherwise

 dµB

= sup
n∈N

(1U (1)
1

2
+
∞∑

w=0

1U (w + 1)µn({w}))

= 1U (1)
1

2
+

∞∑
w=0

1U (w + 1)(sup
n∈N

µn({w}))

By induction on n, we can show that µn is the measure

µn = {0} 7→ 0, {1} 7→ (1/2), . . . , {n} 7→ (1/2)n .
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Hence, we can conclude that supn∈N µn is a geometric distribution and that EJstdGeometricKρ
is a Geometric distribution.

4.6.2 Continuous Distributions

We fill in the sketch of the standard uniform distribution we presented in the background.

As a reminder, we need to convert a random bit-stream into a sequence of (dyadic) rational

approximations.

stdUniform :: Samp Real
stdUniform = asampler (\u -> approx (\n -> bisect (n+1) u 0 1 0))

where
bisect n u (l :: Rat) (r :: Rat) m

| m < n && u m =
bisect n u l (midpt l r) (m+1)

| m < n && not (u m) =
bisect n u (midpt l r) r (m+1)

| otherwise =
midpt l r

midpt l r = l + (r - l) / 2

The function bisect repeatedly bisects an interval specified by (l, r). By construction, the

sampler produces a sequence of dyadic rationals. We can see that this sampling function is

uniformly distributed because it inverts the binary expansion specified by the uniformly dis-

tributed input bit-stream. Once we have the standard uniform distribution, we can encode

other primitive distributions (e.g., normal, exponential, etc.) as transformations of the uni-

form distribution as in standard statistics using return and bind.

For example, we give an encoding of the standard normal distribution using the Marsaglia

polar transformation, which diverges with probability 0:

stdNormal :: Samp Real
stdNormal = do

u1 <- uniform (-1) 1
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u2 <- uniform (-1) 1
let s = u1 * u1 + u2 * u2
if s < 1 then return (u1 * sqrt (log s / s))

else stdNormal

The distribution uniform (−1) 1 is the uniform distribution on the interval (−1, 1) and can be

encoded by shifting and scaling a draw from stdUniform. We can check that this distribution

produces a sample with probability 1 by showing that both s = 1 (by absolute continuity)

and divergence (by Borel-Cantelli) occur with probability 0. Note that the operation < semi-

decides both < and >, where we have that equality does not hold with probability 1.

4.6.3 Singular Distribution

Next, we give an encoding of the Cantor distribution. The Cantor distribution is singular so

it is not a mixture of a discrete component and a component with a density. The distribution

can be defined recursively. It starts by trisecting the unit interval, and placing half the mass

on the leftmost interval and the other half on the rightmost interval, leaving no mass for the

middle, continuing in the same manner with each remaining interval that has positive proba-

bility. We can encode the Cantor distribution by directly transforming a random bit-stream

into a sequence of approximations.

cantor :: Samp Real
cantor = asampler (\u -> approx (\n -> go u 0 1 0 n))

where
go u (left :: Rat) (right :: Rat) n m

| n < m && u n =
go u left (left + pow) (n + 1) m

| n < m && not (u n) =
go u (right - pow) right (n + 1) m

| otherwise =
right - (1 / 2) * pow

where pow = 3 ^^ (-n)
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The sampling algorithm keeps track of which interval it is currently in specified by left and

right. If the current bit is 1, we trisect the left interval. Otherwise, we trisect the rightmost

interval. Crucially, the number of trisections is bounded by the precision we would like to

generate the sample to. We could express the Cantor distribution in a measure-theoretic lan-

guage with recursion, but we would need to trisect infinitely to express the distribution ex-

actly.

4.6.4 Distributions and Partiality

We investigate the semantics of divergence more closely now. Consider the two expressions

below.

botSamp :: (CMetrizable a) => Samp (A a)
botSamp = botSamp

botSampBot :: (CMetrizable a) => Samp (A a)
botSampBot = asampler (\_ -> bot)

where bot = bot

In the former, we obtain the bottom valuation, which assigns 0 mass to every open set. This

corresponds to the sampling function u ∈ 2ω 7→ ⊥ and can be interpreted as failing to provide

a sampler. In the latter, we obtain the valuation that assigns 0 mass to every open set, except

for the set {⌊X⌋ ∪ ⊥} which is assigned mass 1. This corresponds to the sampling function

u ∈ 2ω 7→ ⌊⊥⌋ and can be interpreted as providing a sampling function that fails to produce a

sample.

To further illustrate the distinction in semantics between the two expression above, con-

sider sampling from botSamp and botSampBot respectively, but ignoring the result as below.

This will highlight the laziness of the semantics.
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alwaysDiv :: Samp Real
alwaysDiv = do

_ <- botSamp :: Samp Real
stdUniform

neverDiv :: Samp Real
neverDiv = do

_ <- botSampBot :: Samp Real
stdUniform

We can check that the denotation of the former is equivalent to that of botSamp.

EJalwaysDivKρ(U) =

∫
v 7→ µU(0,1)(U) dEJbotSampKρ

= 0

Note that EJbotSampKρ maps every open set to 0 so the integral is 0 as well. However, the

denotation of the latter is equivalent to that of stdUniform.

EJneverDivKρ(U) =

∫
v 7→ µU(0,1)(U) dEJbotSampBotKρ

= sup{
∫

s dEJbotSampBotKρ | s ≤ v 7→ µU(0,1)(U), s simple}

= µU(0,1)(U) EJbotSampBot({⌊X⌋ ∪ ⊥})Kρ
= µU(0,1)(U)

As a reminder, EJbotSampBotKρ has {⌊R⌋ ∪ ⊥} 7→ 1. Hence, the integral takes its largest value

on the simple function µU(0,1)(U)1{⌊R⌋∪⊥}(·) ≤ v 7→ µU(0,1)(U) for any open U .

As a final example, consider the program below that uses a coin flip to determine its di-

verging behavior.

maybeBot :: Samp Bool
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maybeBot = do
b <- bernoulli
if b then return bot else bernoulli

Intuitively, this distribution returns a sampler that always generates diverging samples with

probability 1/2 and returns an unbiased Bernoulli distribution with probability 1/2. If we

changed return bot to botSamp as below

maybeBot ' :: Samp Bool
maybeBot ' = do

b <- bernoulli
if b then bot else bernoulli

then the semantics would change to a distribution that returns a diverging sampler with prob-

ability 1/2 and an unbiased Bernoulli distribution with probability 1/2.

4.6.5 Non-parametric Prior

We give two different encodings of the Dirichlet process, a prior distribution used in mix-

ture models where the number of mixtures is unknown (e.g., [78]). The Dirichlet process

DP(α,G0) is a distribution on distributions—a draw produces a discrete distribution with

support determined by G0, the base distribution, and mass according to α, the concentration

parameter. The Dirichlet process can be represented in multiple ways, where each representa-

tion illuminates different properties. One representation is called the Blackwell-MacQueen urn

scheme (see [78]), which describes how to sample from the distribution resulting from a draw

of the Dirichlet process. Thus, we can imagine it describing the following process:

G ∼ DP(α,G0)

θn | G ∼ G for n ∈ N .
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The conditional distribution of θn is

θn | θ1:n−1 ∼
α

α+ n− 1
G0 +

1

α+ n− 1

n−1∑
j=1

1θj for n ∈ N ,

which shows that the base distribution G0 determines the support and α determines how of-

ten we select a new point from G0 to put mass on. We can encode the conditional distribution

in λCD.

urn' :: Real -> Samp a -> [a] -> Samp a
urn' alpha g0 prev =

let l = length prev
n :: Integer = (toInteger l) + 1
w = 1 / (fromInteger n - 1 + alpha)
ws = replicate l w ++ [alpha]
d = disc_id ws

in do
c <- d
if c == n - 1
then g0
else return (prev !! (fromInteger c))

We can put our reasoning principles to work to argue that urn' encodes the conditional dis-

tributions. First, we can use a distributional view of the monadic block of urn' under an en-

vironment ρ, where µ = EJdKρ.

EJc← d ; if0 c == n-1 then g0 else return (prev !! c)Kρ = λU.

∫
v 7→π1 ◦


EJg0Kρ[c 7→ v](U) if EJc == n-1Kρ[c 7→ v]

EJreturn (prev !! c)Kρ[c 7→ v](U) otherwise
dµ
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Next, substituting away the let bindings (justified by Haskell semantics) implies that EJdKρ is

the discrete distribution

0 7→ 1

α+ n− 1
, . . . , n− 2 7→ 1

α+ n− 1
, n− 1 7→ α

α+ n− 1
.

This reduces the previous integral to the summation

U 7→
n−2∑
j=0

1

α+ n− 1
EJreturn (prev !! c)Kρ[c 7→ j](U)

+
α

α+ n− 1
EJg0Kρ[c 7→ n− 1](U) ,

where EJg0Kρ is the base distribution G0. Rewriting this in statistical notation gives the de-

sired result

EJurn' alpha g0 prevKρ ∼ α

α+ n− 1
G0 +

∑n−1
j=1

α+ n− 1
1prevj

.

Next, we can describe the entire infinite sequence using lazy monadic lists

data MList m a = Nil | Cons a (m (MList m a))

and analogoulsy define common operations expected of lists such as iterate, map, and tail.

urn :: forall a. Real -> Samp a -> Samp (MList a)
urn alpha g0 =

let f :: ((a, [a]) -> Samp a) = return . fst)
g (_, acc) = do

x <- urn' alpha g0 acc
return (x, acc ++ [x])

in do
x0 <- g0
xs <- ML.map f (ML.iterate g (return (x0, [])))
ML.tail xs
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Expressing the resulting conditional distribution for each n gives

EJurn alpha g0Kρn | EJurn alpha g0Kρ1:n−1 ∼
α

α+ n− 1
G0 +

∑n−1
j=1

α+ n− 1
1psh EJurn alpha g0Kρj

.

Alternatively, there is a constructive representation known as the stick-breaking construc-

tion (see [78]) that gives the structure of the discrete distribution directly. We describe a pro-

cess that gives G ∼ DP(α,G0). First, let random variables βk ∼ Beta(1, α) be distributed

according to the beta distribution for k ∈ N. Next, define πk = βk

∏k−1
i=1 (1− βi) for k ∈ N. Let

Xk ∼ G0 for k ∈ N. The result G is
∑∞

k=1 πk1Xk
(·). We can encode the stick-breaking con-

struction in λCD, where ML.@: is synonymously ML.Cons and ML.!!! indexes a lazy monadic

list. The function mdiscId samples an index according to an input lazy monad list specifying

probabilities.

sticks :: Real -> Samp a -> Samp a
sticks alpha g0 = do

xs <- ML.repeat g0
pis <- weights 1
c <- mdiscId pis
xs ML.!!! fromInteger c

where
weights :: Real -> Samp (MList Real)
weights left = do

v <- beta 1 alpha
return ((v * left) ML.@: (weights (left * (1 - v))))

We can follow a similar pattern to reason about the urn representation. For instance, we can

analyze this function compositionally as before by reasoning that the code fragment

c <- mdiscId pis
xs ML.!!! fromInteger c
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selects a sample from xs according to the weights pis. Finally, we can combine this with

showing that weights generates the weights πk.

The encodings show that we can use probabilistic and standard program reasoning princi-

ples at the same time. Because we checked that each program encoded their respective rep-

resentation, we also obtain that sampling sticks an infinite number of times is equivalent

to urn because both encode the Dirichlet process. This might seem strange because the urn

encoding has more sequential dependencies than the stick-breaking representation. The equiv-

alence relies on a probabilistic concept called exchangeability, which asserts the existence of a

conditionally independent representation if the distribution is invariant under all finite permu-

tations. Exchangeability has been studied in the Type-2 setting [34] and it would be interest-

ing to see if we can lift those results into λCD.

4.7 Conditioning

Conditioning is the core operation of Bayesian inference. As we alluded to earlier, condition-

ing is not computable in general [3]. We could use a more abstract definition of condition-

ing used in measure theory, but it would be undesirable if the semantics of conditioning for a

probabilistic programming language was not computable given that one of its goals is to au-

tomate inference. Instead, we take a library approach, which requires the client to provide an

implementation of a conditioning algorithm and limits us to situations where conditioning is

computable. Hence, the semantics of our core language remains unchanged.

4.7.1 Preliminaries

We give the computable form of conditioning (see Chapter 2 for background on conditioning).
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module CondLib (BndDens, obsDens) where
import ALib
import CompDistLib
import RealLib

newtype BndDens a b =
BndDens { getBndCondDens :: (A a -> A b -> Real, Rat) }

-- Requires comp. dist. and bounded conditional density
obsDens :: forall u v y.

(CMetrizable u, CMetrizable v, CMetrizable y) =>
Samp (A (u, v)) -> BndDens u y -> A y -> Samp (A (u, v))

Figure 4.4: An interface for conditioning.

Definition 4.7.1 (Computable probability kernel [3, Def. 4.2]). Let S and T be computable

metric spaces, and BT be the σ-algebra on T . A probability kernel κ : S × BT → [0, 1] is

computable if κ(·, A) is a lower semi-computable function for every r.e. open A ∈ σ(BT ).

Definition 4.7.2 (Computable conditional distribution [3, Def. 4.7]). Let X and Y be ran-

dom variables in computable metric spaces S and T . Let κ be a version (Section 2.3.2) of

P[Y | X] (notation for P[Y ∈ · | X]). Then P[Y | X] is computable if κ is computable on

a PX measure-one subset.

Thus, a non-computable conditional distribution is one for which every version is non-computable.

4.7.2 Conditioning as a Library

Now, we add conditioning as a library to λCD (Fig. 4.4). λCD provides only a restricted con-

ditioning operation obs_dens, which requires a conditional density. We will see that the com-

putability of obs_dens corresponds to an effective version of Bayes’ rule. We have given only

one conditioning primitive here, but it is possible to identify other situations where condition-
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ing is computable and add those to the conditioning library. For example, conditioning on

positive probability events is computable (see [36, Prop. 3.1.2]).

The library provides the conditioning operation obs_dens, which enables us to condition on

continuous-valued data when a bounded and computable conditional density is available.

Proposition 4.7.1. [3, Cor. 8.8] Let U , V and Y be computable random variables, where

Y is independent of V given U . Let pY |U (y | u) be a conditional density of Y given U that is

bounded and computable.12 Then the conditional distribution P[(U, V ) | Y ] is computable.

The bounded and computable conditional density enables the following integral to be com-

puted, which is in essence Bayes’ rule. A version of the conditional distribution P((U, V ) | Y )

is

κ(U,V )|Y (y,B) =

∫
B
pY |U (y | u) dP(U,V )∫
pY |U (y | u) dP(U,V )

where B is a Borel set in the space associated with U × V .13

Another interpretation of the restricted situation is that our observations have been cor-

rupted by independent smooth noise [3, Cor. 8.9]. To see this, let U be the random variable

corresponding to our ideal model of how the data was generated, V be the random variable

corresponding to the model parameters, and Y be the random variable corresponding to the

corrupted data we observe. Notice that the model (U, V ) is not required to have a density and

can be an arbitrary computable distribution. Indeed, probabilistic programming systems pro-

posed by the machine learning community impose a similar restriction (e.g., see [42, 119]).

12Note that pY |(U,V )(y | u, v) = pY |U (y | u) due to the conditional independence of Y and V given
U .

13As a reminder, pY |(U,V )(y | u, v) = pY |U (y | u) due to the conditional independence of Y and V
given U . Hence, the conditional density pY |U (y | u) in the integral written more precisely is (u, v) 7→
pY |U (y | u).
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Now, we describe obs_dens, starting with its type signature. Let the type BndDens τ σ

represent a bounded computable density:

newtype BndDens a b =
BndDens { getBndCondDens :: (A a -> A b -> Real, Rat) }

Conditioning thus takes a samplable distribution, a bounded computable density describing

how observations have been corrupted, and returns a samplable distribution representing the

conditional. In the context of Bayesian inference, it does not make sense to condition distri-

butions such as maybeBot that diverge with positive probability. Hence, we do not give se-

mantics to conditioning on those distributions. Again, practical probabilistic programming

systems enforce a similar restriction (e.g., see [42, 119]).

The implementation of obs_dens is in essence a λCD program that implements the proof

that conditioning is computable in this restricted setting. This is possible because results in

computability theory have computable realizers.14

obsDens :: forall u v y.
(CMetrizable u, CMetrizable v, CMetrizable y) =>
Samp (A (u, v)) -> BndDens u y -> A y -> Samp (A (u, v))

obsDens dist (BndDens (dens, bnd)) d =
let f :: A (u, v) -> Real = \x -> dens (afst x) d

mu :: Prob (u, v) = stc dist
nu :: Prob (u, v) = \bs ->

let num = integrateBndDom mu f bnd bs
denom = integrateBnd mu f bnd

in map fst (cauchyToLU (num / denom))
in

cts nu

14That is, we implement the Type-2 machine code as a Haskell program. The implementation
relies on Haskell’s imprecise exceptions mechanism [88] to express the modulus of continuity of a
computable function. See Andrej Bauer’s blog (http://math.andrej.com/2006/03/27/sometimes-all-
functions-are-continuous) and also Remark 4.7.2.
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The parameter dist corresponds to the joint distribution of the model (both model param-

eters and likelihood), dens corresponds to a bounded conditional density describing how ob-

servation of data has been corrupted by independent noise, and d is the observed data. Next,

we informally describe the undefined functions in the sketch. The function afst projects out

the first component of a product of approximations. The functions stc and cts witness the

computable isomorphism between samplable and computable distributions.15 The functions

integrateBndDom and integrateBnd compute an integral (see [51, Prop. 4.3.1]), and corre-

spond to an effective Lebesgue integral. cauchyToLU converts a Cauchy description of a com-

putable real into an enumeration of lower and upper bounds.

Because obs_dens works with conditional densities, we do not need to worry about the

Borel paradox. The Borel paradox shows that we can obtain different conditional distributions

by conditioning on equivalent probability zero events [96].

In addition, note that it is not possible to create a boolean value that distinguishes two

probability zero events in λCD. For instance, the operator == implementing equality on reals

returns false if two reals are provably not-equal and diverges otherwise because equality is not

decidable.

To end, we give an encoding in λCD of an example by Ackerman et al. [3] that shows that

conditioning is not always computable. Similar to other results in computability theory, the

example demonstrates that an algorithm computing the conditional distribution would also

solve the Halting problem.

nonComp :: Samp (Nat, Real)
nonComp = do

15The computable isomorphism relies on the distributions being full-measure. The algorithm is
undefined otherwise.
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n <- geometric (1/2)
c <- bernoulli (1/3)
u <- uniform 0 1
v <- uniform 0 1
x <- return (approx (\k -> dk c k (tmHaltsWithinK n k)))
return (n, x)

where dk c k m | m > k = anth v k
| m = k = c
| m < k = anth u (k - m - 1)

The function tmHaltsWithinK accepts a natural n specifying the n-th Turing machine and a

natural k describing the number of steps to run the machine for, and returns the number of

steps the n-th Turing machine halts in or k if it cannot tell. Upon inspection, we see the func-

tion dk produces the binary expansion (as a dyadic rational) of a real, using tmHaltsWithinK

to select different bits of the binary expansion of u or v, or the bit c. Thus, tmHaltsWithinK

is computable because we can enumerate those Turing machines that halt within k steps.

Intuitively, computing the conditional distribution of a distribution encoded as a program

corresponds to running it backwards. For example, computing the conditional distribution

P (N | X), where the random variable N corresponds to the program variable n and X to

x, would require us to compute the complement of tmHaltsWithinK. Of course, we cannot

enumerate the complement of the Halting set, so nonComp encodes a computable distribution

whose conditional is not computable. We refer the reader to the full proof in Ackerman et

al.’s original paper [3].

Remark (Encoding). In this section, we describe in more detail the implementation of the li-

brary interface. The implementation is a proof of concept that shows we can realize the inter-

face by coding results and proofs about computable distributions as Haskell code, as opposed

to solely relying on the written descriptions of Type-2 machine code. Currently, we have only

informally argued that the code correctly encodes the corresponding proof.
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One computable function we need to encode is the modulus of a computable function be-

tween computable metric spaces. The modulus g : (X → Y ) → N → N of a computable func-

tion f : X → Y between computable metric spaces (X, dX ,SX) and (Y, dY ,SY ) is a function

that computes the number of input approximations consumed to produce an output approxi-

mation to a specified precision. For example, if the algorithm realizing f looks at sXi0 , . . . , s
X
i41

to compute an output sin such that dY (s
Y
in
, f(x)) < 2−(n+1) and (sXim)m∈N → x, then the

modulus g(f)(n) is 42.

We use Haskell’s imprecise exceptions mechanism [88], an impure feature, in a restricted

manner to express the modulus.16 Hence, we can raise exceptions in pure code but only catch

them in the IO monad.

modulus :: (A a -> A b) -> A a -> Nat -> IO Nat
modulus f x n = do

e :: Either E.ErrorCall b <- E.try (E.evaluate $ anth (f x) n)
case e of

Left _ -> E.throw E.NonTermination
Right _ -> search 0
where

trunc :: A a -> Nat -> A a
trunc x n = approx (\m -> if m < n

then (anth x m)
else unique_fail)

search :: Nat -> IO Nat
search acc = do

e :: Either E.ErrorCall b <- E.try $ E.evaluate $
anth (f (trunc x acc)) n

case e of
Left _ -> search (acc + 1)
Right _ -> return acc

The function truncate cuts off an infinite input at some level by calling E.throw E.NonTermination

to throw an unique exception if it is accessed. The function search starts at providing access

16See Andrej Bauer’s blog http://math.andrej.com/2006/03/27/sometimes-all-functions-are-
continuous
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to 0 elements in the input sequence and attempts to compute the function until an exception

is not thrown. The first such number to not trigger an exception is the amount of input re-

quired for that particular output. Catching the exception forces the computation into the IO

monad. To ensure that the unique exception from truncate is caught, we first attempt to eval-

uate f on the bare value x to ensure that no exceptions are thrown. Note that the modulus of

two extensionally equivalent functions may not be equivalent.

Computations that use the modulus will be forced into the IO monad. To avoid pollut-

ing the type of any library function that uses the modulus we use unsafePerformIO. Infor-

mally, this is safe because computing the modulus of the same function in different contexts

(or world in Haskell terminology) produces equivalent results.

4.8 Realizability

Before we overview some of the related work on semantics, we informally discuss realizability

and possible connections to our work. I would like to thank Bas Spitters and Lars Birkedal

for pointing out and discussing the possible connections with the semantics presented in this

chapter.

For the purposes of this dissertation, realizability is of particular interest because it pro-

vides an alternative approach to Type-2 computability.17 Hence, it is quite likely that we can

give semantics to probabilistic modeling languages based on realizability, and moreover, that

such semantics are connected with the semantics presented in this chapter. We refer the in-

terested reader to Bauer’s thesis [12] and Lietz’s thesis [65] (and the references within) for

background on realizability. In the rest of this section, we gather the relevant definitions and

17In fact, realizability pre-dates Type-2 computability.
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ideas following Streicher’s notes [105], and informally sketch out the possible connections with

our semantics.

The starting structure for realizability is known as a partial combinatory algebra (pca),

which provides an abstraction of an untyped model of computation. Hence, it is similar to the

Type-2 machine that grounds Type-2 computability (Section 2.2.1). As we will see, a Type-2

machine can be seen as an instance of a particular pca. Rather than provide the standard def-

inition of a pca, we give an equivalent characterization of a pca which makes its connection to

(untyped) lambda calculus more apparent. For this, we will need some auxilliary definitions

first.

Definition 4.8.1.

• An applicative structure is a tuple A = (|A|, ·), where |A| is a set and the (partial)
binary operation · : |A| × |A|⇀ |A|. For readability, we use infix notation for ·.

• A polynomial over an applicative structure A is a term that is build from countably
many variables and constants for elements of A using the binary operation · : |A| ×
|A| ⇀ |A|. As notation, we write t[x1, . . . , xn] to be a polynomial over the variables
x1, . . . , xn, i.e., with free variables x1, . . . , xn. When the variables are clear from con-
text, we will abbreviate t[x1, . . . , xn] as simply t. For a1, . . . , an ∈ A, the notation
indicates that t[a1/x1, . . . , an/xn] ↓ it is defined (recall that · is a partial operation).
To abstract over a variable x in a term t[x1, . . . , xn, x], we write Λx. t[x1, . . . , xn, x], in
which case (Λx. t[x1, . . . , xn, x]) · a ≜ t[x1, . . . , xn, a/x]. As usual, we have a fv defined in
the typical manner that computes the free variables of a term. Finally, we write t1 ∼= t2

whenever t1 ↓ ∨t2 ↓ =⇒ t1 = t2. In words, t1 ∼= t2 whenever both are defined and are
equal or whenever both are undefined. The collection of polynomials is written T (A).

Now, we can give the definition of a pca. Again, this is not the standard definition, but this

equivalent characterization is suitable for our purposes.

Definition 4.8.2 ([105, Lem. 3.1]). An applicative structrue A is a partial combinatory

algebra (pca) if for every polynomial t ∈ T (A) and variable x, there exists a polynomial
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Λx. t ∈ T (A) with fv(Λx. t) ⊆ fv(t)\{x} such that Λx. t ↓ and (Λx. t) · a ∼= t[a/x] for any

a ∈ A.

In essence, this captures the idea that abstraction and substitution are related in the usual

way, i.e., (Λx. t) · a ∼= t[a/x] for any a ∈ A.

We give examples of relevant pcas.

Example 2 (Kleene’s first algebra [105, Ex. 3.1]). K1 = (N, ·) is a pca for n ·m ≜ {n}m, where

{n}m is Kleene application. That is, apply the n-th recursive function to the argument m.

Operationally, we might think of this pca as an abstraction of a Turing-machine.

Example 3 (Kleene’s second algebra [105, Ex. 3.4]). K2 = (NN, ·) is a pca where the appli-

cation satisfies a finite prefix property (see Section 2.2.1). The space NN is known as Baire

space. Operationally, we might think of this pca as an abstraction of a Type-2 machine.

In particular, this last example highlights the connection with Type-2 computability. Indeed,

we can think of a pca as abstracting over a model of computation.

For each pca A, we can define a category of assemblies Asm(A) and a category of modest

sets Mod(A) over it. Modest sets are sufficient for our purposes—they can be considered as a

category of data types that are implementable by the pca A.

Definition 4.8.3 ([105, Defn. 4.1]). Let A be a pca. The category of assemblies Asm(A) is

defined as follows:

• Objects are tuples X = (|X|, δX), where |X| is a set and δX is a relation associating
every x ∈ |X| with a non-empty subset of A. We sometimes write this relation as a ⊨X

x instead of a ∈ δX(x) for any a ∈ A, and say that a realizes x.

• Morphisms are maps f : |X| → |Y | such that for any a ⊨X x, there exists e ∈ A such
that e · a ↓ and e · a ⊨X δY (f(x)). In this case, e is said to track f , written e ⊨ f .
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An assembly X over A is a modest set if x = y whenever δX(x) ∩ δX(y) is non-empty. In

other words, elements of the underlying set for a modest set are completely determined by

their realizers, i.e., different elements cannot share realizers.18 The category of modest sets

Mod(A) is the full subcategory of Asm(A) with modest sets as objects.

Now that we have some of the basic definitions, we can discuss possible connections with our

semantics.

The chain of inclusions we would like to show, where we write ⊂ to mean full subcategory,

is the following:

TD ⊂ TP ⊂Mod(K2) ⊂ Asm(K2) ⊂ RT(K2) .

1. TD ⊂ TP: Recall that a topological domain is a topological predomain with least
element.

2. TP ⊂ Mod(K2): This is a conjecture. Battenfeld in his thesis [9, Ch. 6] shows that
TP ⊂Mod(P(N)), where P(N) is the pca that corresponds to Scott’s graph model [105,
Ex. 3.2]. Battenfeld remarks that it is also possible to use Kleene’s second algebra K2

instead of P(N) and obtain similar results [9, Ch. 6]. However, he does not give the
details and we have not fully checked the details ourselves. Hence, we leave this as a
conjecture.

3. Mod(K2) ⊂ Asm(K2): Recall that a modest set is an assembly where every element is
completely determined by its realizers.

4. Asm(K2) ⊂ RT(K2): The category RT(A) is known as the realizability topos over
the pca A [105, Sec. 5]. It is well-known (among those that study realizability) that
Asm(A) forms a full subcategory of RT(A) for any pca A [105, Sec. 5]. In particu-
lar, the subcategory of assemblies corresponds exactly to the ¬¬-separated object of
RT(A) [105, Sec. 5].19

18Note that this is equivalent to the requirement that a representation in the context of Type-2
computability be surjective.

19Let E be a binary relation. We say that an object X of a topos E is ¬¬-separated if the formula
∀x, y : X. ,¬¬E(x, y) → E(x, y) holds in E . Intuitively, we should think of E as an equality relation,
in which case we can think of an ¬¬-separated object as an object with a stable equality. If we can
show that the base topological domains and constructions we use on them yield stable equalities, then
we will have found an embedding of topological domains into RT(K2).
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Remark (Hints in the literature). Faissole et al. [32] recently give a formalization of valuations

using synthetic topology and Homotopy Type Theory (HoTT) in the Coq proof assistant that

hints at the connection of realizability with our semantics for probabilistic modeling language

based on topological domains. They add (1) axioms for synthetic topology and (2) axioms for

HoTT (i.e., univalence) to Coq’s logic (i.e., as a shallow embedding). Then, they formalize

valuations and the associated operations (e.g., integration). Interestingly, they also discuss

possible semantic models of this extended logic, which is where a possible connection to realiz-

ability can be found. First, we should review their semantics and how it relates to ours.

They suggest using standard models of synthetic topology (i.e., subcategories of presheaf

categories of topological spaces) and then construct valuations by defining a monad on the

appropriate category. This is similar to our semantics as well, where we also define a proba-

bility monad on an appropriate category to interpret valuations. Interestingly, we could use

other models to interpret the synthetic topology axioms such as represented spaces. Note that

the standard models of synthetic topology are supercategories, whereas the ones listed above

are all subcategories. Another difference is that they treat recursion using enriched categories,

whereas topological domains by construction contain a least element.

Remark (Why investigate this connection?). It may be fruitful to investigate the connections

between a semantics for probabilistic programs based on Type-2 computable distributions and

realizability. In particular, full-abstraction and universality have been studied in the context

of using realizability toposes to give semantics to PCF-like languages [66]. Consequently, if we

can embed such a semantics into a realizability topos, then we can leverage these results. In

particular, this would rigorously formalize our motto: “Turing-complete probabilistic modeling

languages express computable distributions.”
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distributions
supported

language
features

sampling
interpretation

distribution
interpretation

Jones et
al. [54]

discrete higher-order w/
recursion

yes and
computable

yes

Ramsey et
al. [94]

discrete higher-order
w/o recursion

yes and
computable

yes

Kozen et
al. [59]

measures first-order w
recursion

yes yes

Park et
al. [86]

measures higher-order w
recursion

yes no

Borgström
et al. [17]

measures first-order w/o
recursion

no yes

Toronto et
al. [111]

measures first-order w
recursion

no yes

Our work computable higher-order w/
recursion

yes and
computable

yes

Figure 4.5: A comparison of the different approaches to semantics of probabilistic programs.

4.9 Related Work

In this section, we review related work on the semantics of probabilistic programming lan-

guages and comment on its relation to ours. Earlier work focuses on semantics that can be

used to model random algorithms (e.g., [121, 59]). More recently, the focus has shifted to-

wards machine learning applications such as Bayesian inference, which requires an account of

continuous distributions and observation of zero probability events (e.g., [17]).

Saheb-Djahromi developed a probabilistic version of LCF by considering distributions on

base types, i.e., booleans and naturals [99].20 He constructs two additional CPOs, one CPO

for the distributions on booleans and the other CPO for distributions on naturals, and uses

this to give denotational semantics to Probabilistic LCF. He also gives operational semantics

20As a historical note, this work followed soon after Plotkin’s landmark paper “LCF considered as
a programming language” [92] so the study of the semantics of high-level probabilistic languages is
almost as old as the study of the semantics of high-level languages itself.
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as a Markov chain (described by an infinite transition matrix as all spaces he considers distri-

butions on are discrete) and shows that the operational semantics is equivalent to the denota-

tional semantics. Hence, the importance of relating a sampling semantics with a distributional

semantics has been recognized since the advent of the study of the semantics of probabilistic

programs.

Saheb-Djahromi extended his previous work by showing how to construct a CPO of Borel

measures on an arbitrary CPO D using D’s Scott topology [100]. However, the resulting

CPO of Borel measures did not possess domain-like properties (e.g., it was not ω-algebraic).

Jones, in her seminal work, developed the theory of valuations on CPOs to further the

study of distributions on CPOs [54, 53].21 She considers valuations on the Scott open sets

of a CPO, instead of measures. The functor P that sends a CPO D to the CPO of valuations

P (D) on D is the probabilistic powerdomain (i.e., distributions on powersets). However, this

construction is not closed under the function space.22 Consequently, she interprets the func-

tion space D ⇒ E probabilistically as D ⇒ P (E) and not P (D) ⇒ P (E). Our semantics has

the same restrictions as hers as well.

Instead of taking order-theoretic structure as primary and extending it with probabilistic

concepts, another line of research takes probabilistic structure as primary and derives order-

theoretic structure to support recursion. As a reminder, the probabilistic powerdomain is not

well-behaved on continumm-sized spaces so this alternative approach can better support stan-

dard continuous distributions.

Kozen takes a structure amenable for modeling probability as primary, i.e., Banach spaces,

21As terminology, she refers to CPOs as IPOs.

22To our knowledge, it is still an open problem [55].
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and derives order-theoretic structure from it [59].23 Consequently, his semantics supports

standard continuous distributions. However, his semantics does not support higher-order func-

tions. In addition to the distributional semantics, Kozen also gives a sampling semantics and

shows it equivalent to the distributional semantics. Hence, we can view our work as a modern

take on Kozen’s semantics that extends to support higher-order functions as well as gives an

account of computability.

Panangaden identifies a category of stochastic relations and shows how to use it to give de-

notational semantics to Kozen’s first-order while language [85]. The category has measurable

spaces as objects and probability kernels as morphisms (as opposed to measurable functions).

He then identifies (partially) additive structure in this category and uses it to interpret fix-

points for Kozen’s while language.

Continuing in the direction of starting with probabilistic structure and deriving order-

theoretic structure, Danos et al. identify Probabilistic Coherence Spaces (PCSs) and use it

to give denotational semantics to a probabilistic variant of PCF extended with (countable)

choice [23]. Hence, their approach supports discrete distributions. They also give an opera-

tional semantics and provide an adequacy result: the denotation of a term evaluated at some

natural is the probability that a term reduces to it.

The semantics of probabilistic programs has also been studied in the context of Bayesian

machine learning.24 Ramsey et al. introduced a stochastic lambda calculus with discrete dis-

23This shift in viewpoint is similar in spirit to topological domains, which take the topology as
primary and the order as derived.

24As a historical note, Gibbs sampling was rediscovered by the statistics community in 1984 by Ge-
man and Geman [39], which led to a resurgence of Bayesian statistics. Indeed, the BUGs (Bayesian
inference Using Gibbs sampling) language was developed soon after to take advantage of Gibbs sam-
pling.

109



tributions via a probability monad, but without recursion, and translated it into a language of

measure terms [94]. Ramsey et al. use Jones’ powerdomain of valuations to give denotational

semantics to the stochastic lambda calculus, but interpret the language of measure terms us-

ing discrete measures. Their intention was to show how the language of measure terms could

efficiently support variable elimination, a technique for computing expectations. They also

hint at Jones’ powerdomain as a starting point for extending the stochastic lambda calculus

with recursion.

Park et al. support continuous distributions in a PCF-like programming language, also

with a probability monad, and provide a small-step sampling semantics [86]. They show how

to encode Bayesian models in their language and how to answer probabilistic queries in their

language (e.g., by programming a rejection sampler). Their sampling semantics determin-

istically maps input randomness into outputs. Hence, the sampling semantics is in essence

identical to Kozen’s and ours. However, we use random bit-streams to make the connection to

Type-2 computability whereas Park et al.assume a blackbox supply of random real numbers

and do not address computability. Moreover, Park et al. do not give denotational semantics.

Related to the study of operational semantics of probabilistic programs but without an em-

phasis on machine learning, Dal Lago et al. investigate a probabilistic lambda calculus more

directly (i.e., without a monad) by extending the lambda calculus with a choice operator and

studying its operational semantics [62]. Thus, they study a non-deterministic untyped lambda

calculus. They give both small-step and big-step semantics in call-by-value and call-by-name

variations. In addition, they show that the language is sound and complete with respect to

computable probability distributions on the natural numbers. Hence, their work focuses on

discrete distributions.

110



Borgström et al. give denotational semantics to a first-order probabilistic programming

language without recursion based on measure transformers [17]. They propose the idea of

types as measurable spaces, i.e., the interpretation of a type is the space of measures (which

itself is a measurable space) on the base measurable space associated with the type. Thus,

they work in the category of measurable spaces, identify a functor P that sends a measurable

space D to the space of measures on D, and lift the non-probabilistic semantics on morphisms

f : D → E as P(f) : P(D) → P(E) (hence, measure transformer) to give probabilistic

semantics.25 They show how to compile this language into a factor graph for inference.

Another critical aspect of their work is to give semantics to observation of zero probabil-

ity events, in essence by taking the limit of a sequence of sets that converges to 0. Here, we

point out that showing that a regular conditional distribution exists is highly non-trivial and

also that unless certain nice conditions (typically topological in nature) are imposed, the se-

quence of sets can change the answer (see Kac-Slepian paradoxes [95]). Moreover, by the non-

computability of conditioning, it is unclear that their semantics is faithfully implementable.

Toronto et al. give denotational semantics to a first-order probabilistic language with re-

cursion [111]. They translate the source language into a variant of lambda calculus extended

with ZFC set theory called λZFC [110]. The idea is to interpret a probabilistic program as a

random variable, i.e., a measurable function and treat conditioning as a preimage computa-

tion, which is entirely set-theoretic. Compared to other denotational semantics of probabilistic

programs, theirs is somewhat nonstandard. For instance, it is not clear (at least to me) what

a model of λZFC, the target of denotation, is. Moreover, they support recursion with an opera-

tional semantics instead of with the usual order-theoretic treatment. They support condition-

25I have taken the liberty to summarize their work using the language of category theory, although
their original work is not presented in this manner.
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ing in a similar manner to Borgström et al., and hence, will encounter the same issues.

Staton et al. give both operational and denotational semantics to a higher-order proba-

bilistic language without recursion [104], and relate the two. They first give denotational se-

mantics to the first-order subset of their language by interpreting types using the category

of measurable spaces (as in Borgström et al. [17]). To extend this to the higher-order setting

(because the category of measurable spaces is not Cartesian closed), they consider the functor

category obtained by the Yoneda embedding. It is well that this presheaf category is Cartesian

closed, and hence, has the structure to interpret higher-order functions.
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5
Towards Compilation of Probabilistic Modeling

Languages

In this chapter, we review MCMC methods in preparation for the second part of the disserta-

tion, where we describe a PPL compiler that generates MCMC inference algorithms. MCMC

is a fairly general and black box method [18] that can be used to sample from analytically in-

tractable posterior distributions. Consequently, it is the inference method of choice for many

PPLs [19, 42, 120, 108, 113, 119] as well as the approach used in this dissertation. After we
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review MCMC basics, we will walk through at a high-level how to apply it to a GMM to high-

light some of the design choices involved.

5.1 Markov Chain Monte Carlo (MCMC)

We begin our review of MCMC in a general setting (Section 5.1.1) to introduce the basic con-

cepts behind MCMC, including Markov chains and the Monte Carlo principle. Then, we will

review MCMC in the context of Bayesian inference (Section 5.1.2), including standard MCMC

algorithms such as Metropolis-Hastings (MH). For more background on MCMC, we refer the

reader to the MCMC literature [18, 98, 97].

5.1.1 General MCMC

A MCMC (Markov Chain Monte Carlo) algorithm, as its name suggests, combines (1) Markov

chains and (2) the Monte Carlo principle. The former is used to construct a sampler targeting

a distribution of interest. The latter is used to convert a collection of samples into an estimate

of an expectation (with respect to that distribution).

Markov chains Let (X,F) be a measurable space. A Markov chain taking values in X is a

sequence of X-valued random variables (Xn)n∈N such that

P(Xn+1 | X1, . . . ,Xn) = P(Xn+1 | Xn) .

In words, the random variable Xn+1 depends on only the previous random variable Xn in-

stead of the entire sequence of random variables (X0, . . . ,Xn) preceding it. Let κ : X × F →
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[0, 1] be a probability kernel such that

P(Xn+1 ∈ B) =

∫
X

κ(·, B) dµ

for any measurable B, where µ = P(Xn ∈ ·). As a reminder, we can think of a probability

kernel as the generalization of a conditional density (see kernel in Section 2.3.2). Hence, we

can think of κ as describing the transition probabilities of the Markov chain. The limiting

distribution of the Markov chain is any distribution π that satisfies

π(B) =

∫
X

κ(·, B) dπ ,

where B is measurable. The limiting distribution is also called the equilibrium distribution or

invariant distribution because the probability kernel κ leaves π invariant.

Monte Carlo Given N i.i.d. samples {x1, . . . , xN} drawn from a distribution π, we can

estimate the expectation of a (measurable) function f : X → R via the Monte Carlo principle:

∫
X

f dπ ≈ 1

N

N∑
n=1

f(xn) .

MCMC Let π be the target distribution, i.e., the distribution we wish to draw samples from.

The idea behind a MCMC algorithm is to construct a Markov chain (Xn)n∈N, by specifying

its transition kernel κ, whose limiting distribution is π. Then, for large enough values of n, we

have that P(Xn ∈ ·) ≈ π.1 Note that different transition kernels, and hence difference Markov

1The distance from the n-th marginal distribution to the stationary distribution π is measured in
terms of the total variation distance [98].
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chains, may have the same limiting distribution. However, even though different Markov

chains may share the same limiting distribution, the number of steps n we need to run each

Markov chain before its n-th marginal distribution is approximately the limiting distribution

can vary. Thus, in practice, one would ideally design a MCMC algorithm’s transition kernel

so that it converges quickly to the limiting distribution.

It is common to apply the Monte Carlo principle to the samples generated by a single

MCMC algorithm, i.e., from a single Markov chain. This introduces bias into the Monte Carlo

estimate because the samples are correlated. Nevertheless, this saves computation time. Thus,

in practice, one would ideally design a MCMC algorithm to minimize its within-chain correla-

tion.

5.1.2 MCMC for Bayesian Inference

MCMC in an applied setting can be introduced using the MH (Metropolis-Hastings) algo-

rithm. As a reminder, posterior inference is analytically intractable in general because we can-

not compute the posterior distribution’s normalizing constant. As we will see, the MH algo-

rithm overcomes this limitation by constructing a Markov chain whose limiting distribution is

the posterior distribution of interest using only its unnormalized density.

Figure 5.1 summarizes the MH algorithm and transition kernel. The MH sampling algo-

rithm uses the Markov chain (Xn)n∈N defined recursively as Xn+1 = κMH(Xn), where κMH

is the MH transition kernel (shown in Figure 5.1) and X0 is some starting point. Hence, the

MH algorithm iteratively applies the MH transition kernel. The transition kernel depends on

the (potentially unnormalized) density π of the target distribution and is parameterized by a

proposal distribution q. Given a current state x, the MH transition kernel first draws a sample
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Input : A (potentially unnormalized) density π, a proposal distribution q, an
initial point x0, and the number of iterations N to run the Markov
chain.

Output: A Markov chain with limiting distribution π.
Function MH(π, q, x0, N)

For n← 1 . . . N
xn ← κMH(π, q, xn−1);

return (x1, . . . , xN );
Function κMH(π, q, x)

y ∼ q(· | x);
α← min

(
1, π(y) q(y|x)π(x) q(x|y)

)
;

return y ⊕α x;

Figure 5.1: Pseudocode for the MH algorithm and MH transition kernel. The Markov chain used by the
MH sampling algorithm is defined iteratively as Xn+1 = κMH(Xn), where κMH is the MH transition kernel
and X0 is some starting point.

y according to the proposal distribution q(· | x). Then, it computes the acceptance ratio

α(x, y) = min

(
1,

π(y) q(y | x)
π(x) q(x | y)

)
,

which is a function of the current state x and proposal state y. Finally, it returns y with

probability α and x otherwise. One can see by calculation that this transition kernel leaves

π invariant.

As we mentioned previously, the specifics of a MCMC algorithm’s transition kernel im-

pact its convergence rate and within-chain correlation. In the MH algorithm we just saw, this

corresponds to the choice of proposal distribution q. To guide the construction of a proposal

distribution, MCMC researchers have designed variations of the MH algorithm with proposal

distributions of a certain form. These algorithms include Gibbs sampling, Hamiltonian Monte

Carlo (HMC) sampling [80], and Slice sampling [79]. The requirements of each algorithm are

summarized in Figure 5.2. For each algorithm, we list the form of the proposal, the number of
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Algorithm Form of
Proposal

Number of Likelihood
Evaluations

Sensitivity to
Tuning

Metropolis-Hastings
(MH)

arbitrary 1 very high∗

Gibbs full-
conditional

0 none

Hamiltonian Monte Carlo
(HMC) [80]

gradient-
based

variable high

Slice [79] step-out
procedure

variable low-high∗

Figure 5.2: A table summarizing the requirements of standard MCMC algorithms. The superscript ∗ indi-
cates that the value is dependent on the form of the proposal.

likelihood evaluations required, and the sensitivity of the algorithm to parameter tuning. For

more detail on each of these algorithms, we refer the reader to the MCMC Handbook [18].

Gibbs sampling A Gibbs sampling algorithm uses full-conditional distributions as propos-

als. Suppose we want to construct a sampler for the target distribution p(x1, . . . , xN ). A full-

conditional of p(x1, . . . , xN ) is any conditional distribution

p(xn | x−n) ,

where the notation x−n ≜ {x1, . . . , xN}\{xn} indicates all the variables except the n-th one

for any 1 ≤ n ≤ N . A Gibbs sampling algorithm samples from the target distribution by

sequentially sampling from all the full-conditionals. One can check that the acceptance ratio is

always 1. Thus, the proposal is always accepted and the acceptance ratio does not need to be

computed.

HMC sampling A HMC algorithm constructs a proposal that uses the gradient of the log-

likelihood of the model. Thus, a HMC algorithm can only be applied to continuous spaces.
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Compositionality We illustrate one sense in which a MCMC algorithm is compositional.

Suppose we would like to construct a MCMC sampler for a distribution p(x, y, z) defined on

R3. We can construct this sampler, for instance, by combining a MCMC sampler that samples

the xy-plane with a MCMC sampler that samples the z-axis. Note that we can interpret this

as a Gibbs sampler that targets p(x, y, z) by sampling from the conditionals p(x, y | z) and

p(z | x, y).

5.2 A Running Example

In this section, we will walk through how to hand-construct a MCMC inference algorithm for

a GMM to provide a high-level idea of what goes into the implementation of such an algo-

rithm. For convenience, Figure 5.3 summarizes the generative process for a GMM again (see

Figure 1.2a in the introduction).

For the purposes of deriving and implementing an inference algorithm, practitioners often

turn to the representation of a probabilistic model in terms of its density. Recall that a den-

sity can be used to compare the relative likelihoods of different points in the parameter space.

The density for the GMM is given below.

p(µ, z, y) =
K∏

k=1

pN (µ0,Σ0)(µk)
N∏

n=1

pD(π)(zn) pN (µzn ,Σ)(yn)

In practice, it is more convenient to work with the model’s log-likelihood, which log-transforms

the model’s density.

L(µ, z, y) =
K∑

k=1

log(pN (µ0,Σ0)(µk)) +
N∑

n=1

log(pD(π)(zn)) + log(pN (µzn ,Σ)(yn))
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µk ∼ N (µ0,Σ0) for 1 ≤ k ≤ K

zn ∼ D(π1, . . . , πK) for 1 ≤ n ≤ N

yn | zn, µ ∼ N (µzn ,Σ) for 1 ≤ n ≤ N

Figure 5.3: The generative process for a GMM, a model for clustering a collection of N points in RD into
K clusters centered at µk ∈ RD (for k ∈ 1, . . . ,K), written with random variable notation. The model is
parameterized by the hyper-parameters µ0, Σ0, π, and Σ.

Now that we have a representation of a GMM in a form amenable for inference, we can

construct a MCMC algorithm for it. As a first step, we might consider decomposing the den-

sity according to its full-conditionals so we can apply a different MCMC algorithm to the clus-

ter means µ and cluster assignments z.

p(µ | z, y) =
K∏

k=1

pN (µ0,Σ0)(µk)
N∏

n=1

pN (µzn ,Σ)(yn)

p(z | µ, y) =
N∏

n=1

pD(π)(zn) pN (µzn ,Σ)(yn)

One reason for doing this is so that we can apply different methods for the continuous ran-

dom variables (i.e., the cluster means) separately from the discrete random variables (i.e., the

cluster assignments).

For example, we can apply HMC updates to each µk, which requires the derivation of par-

tial derivatives. The notation [·]P indicates an Iverson bracket, i.e., it takes on the value in-

side the brackets if the predicate P holds and 1 otherwise.

∂

∂µk
L(µ | z, y) =

(
∂

∂µk
pN (µ0,Σ0)(µk)

)
1

pN (µ0,Σ0)(µk)
+

N∑
n=1

(
∂

∂µk
[pN (µzn ,Σ)(yn)]k=zn

)
1

[pN (µzn ,Σ)(yn)]k=zn
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Notably, the GMM’s log-likelihood has a partial derivative with respect to each µk, even

though it also contains discrete random variables zn. For the discrete variables, we can di-

rectly compute its full-conditional to perform a Gibbs update.

p(zn = k) =
pD(π)(k) pN (µk,Σ)(yn)∑K

k′=1 pD(π)(k′) pN (µk′ ,Σ)(yn)

A complete MCMC algorithm can be constructed by alternating HMC updates for µ with

Gibbs updates for z. This finishes the description of a MCMC algorithm at a high-level, but

there are other details of this algorithm that have not been specified that will impact its com-

putational performance.

For example, consider the available parallelism in this high-level algorithm. First, the log-

likelihood evaluations required by HMC can be computed as a map-reduce. In addition, the

computation of the gradient itself can be parallelized. Indeed, there are many parallelization

choices. For instance, we can compute each ∂/∂µk in parallel. However, it may be more effi-

cient to first pre-compute the sum

N∑
n=1

(
∂

∂µk
[pN (µzn ,Σ)(yn)]k=zn

)
1

[pN (µzn ,Σ)(yn)]k=zn

in parallel and then proceed as before. Second, the Gibbs update for each zn can be done in

parallel.

It is also possible to construct other high-level MCMC algorithms for this GMM. For ex-

ample, we can exploit the conjugacy relation between the cluster means and data to obtain

a closed-form full-conditional required for Gibbs sampling. Recall that a conjugacy relation

exists between the prior distribution p(θ) and sampling distribution p(y | θ) when the form
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of the posterior distribution p(θ | x) takes on the same functional form as p(θ). We can also

apply Elliptical Slice sampling, a sampling method designed specifically for multivariate Gaus-

sian distributions, to update the cluster means. In short, we can construct many inference

algorithms for this simple GMM, as well as choose many possible implementation strategies.

5.3 Towards Languages with Automated Inference

As we saw in the previous section, the design space for MCMC sampling algorithms is quite

large. Importantly, in the context of implementing a PPL, how should we architect a compiler

to manage its complexity? Our solution is to come up with a sequence of ILs that enable a

compiler to gradually and successively refine a declarative specification of a model and a query

for posterior samples into an executable MCMC sampling algorithm. Hence, we will focus on

automating a standard technique for probabilistic inference that also forms the basis of many

PPL implementations.
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6
Compiling MCMC Algorithms for Probabilistic

Modeling

In this chapter, we describe a compiler for the AugurV2 language, a language that is similar

in expressive power to Bugs [108] and Stan [19]. Although these languages are not as expres-

sive as PPLs embedded in general-purpose languages, they can still express practical proba-

bilistic models of interest. Indeed, Bugs has been one of the most widely used PPLs to date

(e.g., see Bayesian Modeling Using WinBUGS [83]). Even in this restricted setting, building a
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system that can automate inference efficiently is still a challenging task due to the analytical

intractability of inference.

The AugurV2 compiler is architected like a traditional compiler. We summarize the phases

of compilation below.

• The frontend (Section 6.2) transforms a model in the surface language into the model
intermediate representation, which can be analyzed to derive model-specific facts useful
for generating MCMC algorithms. Hence, the frontend deals exclusively with models.

• The middle-end (Section 6.3) transforms a model into a high-level, executable inference
algorithm. For instance, it is tasked with reifying code that computes mathematical
quantities such as conjugacy relations and gradients. Hence, the middle-end touches
aspects of the model and inference.

• The backend (Section 6.4) transforms an executable inference algorithm into a native
inference algorithm. Hence, the backend deals exclusively with inference. The backend
is the most standard of the phases and is tasked with generating Cuda/C code that
makes all sources of memory usage and parallelism explicit. The backend also statically
bounds the memory requirements of a MCMC sampling algorithm so the runtime does
not need dynamic memory management.

To support these phases of compilation, the AugurV2 compiler uses several intermediate

languages (ILs), summarized below.

• The compiler uses a Density IL to express the density factorization of a model (Sec-
tion 6.2.1). This IL can be analyzed to symbolically compute the conditionals of a
model so that the compiler can generate composable MCMC algorithms.

• The compiler uses a Kernel IL to express the high-level structure of a MCMC algorithm
as a composition of MCMC algorithms (Section 6.3.1). In particular, the AugurV2 com-
piler supports multiple kinds of basic MCMC algorithms, including ones that leverage
conjugacy relations (e.g., Gibbs) and gradient information (e.g., HMC). The Kernel IL
is similar to the subset of the Blaise language [16] that corresponds to inference. We use
the IL for the purposes of compilation, whereas Blaise focuses on the expressivity of the
language.

• The compiler uses Low++ and Low-- ILs to express the details of MCMC inference
(Section 6.3.3). The first exposes parallelism and the second exposes memory man-
agement. The AugurV2 compiler leverages these ILs to support both CPU and GPU
(Section 6.4) compilation of composable MCMC algorithms.
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Our preliminary experiments show that such a compilation process enables us to both

leverage the flexibility of composable MCMC inference algorithms on the CPU and GPU as

well as improve upon the scalability of automated inference (Section 6.6). We have also found

it relatively easy to add new base MCMC updates to the compiler without restructuring its

design. Hence, the compiler is relatively extensible. We do not address the compilation of

more expressive PPLs, but hope that the ideas used in the compilation of AugurV2 can pro-

vide insight into the compilation of more expressive PPLs.

6.1 AugurV2 Overview

In this section, we will introduce the AugurV2 system concretely by showing (1) how to en-

code a GMM in the modeling language (Section 6.1.1) and (2) how to use the system to fit a

GMM to observed data (Section 6.1.2). Throughout the chapter, we will use the GMM as a

running example to explain how the AugurV2 compiler automates the construction of MCMC

sampling algorithms. After we have introduced the entire, end-to-end system, we will the pro-

vide an overview of the AugurV2 compiler (Section 6.1.3).

6.1.1 Modeling Language

At a high-level, the AugurV2 modeling language expresses Bayesian networks whose graph

structure is fixed. This class contains many practical models of interest, including regression

models, mixture models, topic models, and deep generative models such as sigmoid belief net-

works. Models that cannot be expressed include ones that use non-parametric distributions

(which can be encoded in a general-purpose language) and models with undirected depen-

dency structure (e.g., Markov Random Fields whose dependency structure is hard to express
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(K : Int, N : Int, mu_0 : Vec Real,
Sigma_0 : Mat Real, pis : Vec Real, Sigma : Vec Real) => {

param mu[k] ∼ MvNormal(mu_0, Sigma_0)
for k <- 0 until K ;

param z[n] ∼ Categorical(pis)
for n <- 0 until K ;

data y[n] ∼ MvNormal(mu[z[n]], Sigma)
for n <- 0 until N ;

}

Figure 6.1: The GMM (i.e., the running example) encoded as an AugurV2 program. As the example illus-
trates, the AugurV2 modeling language mirrors random variable notation.

in a functional setting). Note that even in this setting, inference can still be difficult due to

the presence of high-dimensional distributions. For example, the dimensionality of a mixture

model such as the GMM scales with the number of observations—each observed point intro-

duces a corresponding latent (i.e., unobserved) cluster assignment.

Figure 6.1 contains an AugurV2 program encoding our running example. The model body

is a sequence of declarations, each consisting of a random variable and its distribution. Each

declaration is annotated as either a model parameter (param) or observed data (data). Model

parameters are inferred (i.e., output) whereas model data is supplied by the user (i.e., input).

In the case of a GMM, the means mu and cluster assignments z1 are model parameters, while

the y values are model data. At the top-level, the model closes over any free variables men-

tioned in the model body. These include the model hyper-parameters (mu_0, Sigma_0, pis,

Sigma) and any other variables the model is parameterized by (K, N).2 It is also possible to

define a random variable as a deterministic transformation of existing variables, although this

1To be pedantic, we should call these latent variables.

2We reserve the term model parameter to refer to a random variable in the model whose distribu-
tion we are trying to infer. Hence, to avoid confusion, we do not refer to the variables that a model is
parameterized by as model parameter.
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feature is not needed to express the GMM in this example.

Random vectors (e.g., mu[k]) are specified using comprehensions with the for construct.

The semantics of AugurV2 comprehensions are parallel, meaning that they do not depend on

the order of evaluation. The idea is to provide a syntactic construct that corresponds to the

mathematical phrase “let µk ∼ N (µ⃗0,Σ0) for 0 ≤ k < K.” Because such a mathematical

statement is implicitly parallel and occurs frequently in the definition of probabilistic mod-

els, we opt for syntactic constructs that capture standard statistical practice, instead of more

standard programming language looping constructs (e.g., an imperative for loop).

As AugurV2 provides only parallel comprehensions, we discourage users from expressing

models with sequential dependencies. For example, we would need to write a Hidden Markov

Model (HMM), where each hidden state depends on the previous state, by manually unfolding

the entire model. This is doable, but does not take advantage of the design of AugurV2.

We impose two further restrictions on AugurV2 comprehensions. First, comprehension

bounds cannot mention model parameters. This forces the comprehension bounds to be con-

stant (although they can still be ragged). For this reason, we say that AugurV2 expresses

fixed-structure models. Second, AugurV2 provides only primitive distributions whose pdf or

pmf has known functional form. Hence, the models AugurV2 expresses are parametric. Cur-

rently, AugurV2 does not support non-parametric prior distributions (i.e., distributions with

an infinite number of parameters so that the number of parameters used scales with the num-

ber of observations).
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import AugurV2Lib
import numpy as np

# Part 1: Load data
y = load_gmm_data('/path/to/data')
N, D = y.shape; K = 3
mu_0 = np.zeros(D)
Sigma_0 = np.eye(D);
Sigma = np.eye(D); pis = np.full(K, 1.0/K)

# Part 2: Invoke AugurV2
with AugurV2Lib.Infer('path/to/model') as av2:
opt = AugurV2Lib.Opt(target='cpu')
av2.setCompileOpt(opt)
sched = 'ESlice mu (*) Gibbs z'
av2.setUserSched(sched)
av2.compile(K, N, mu_0, Sigma_0, pis, Sigma)(y)
samples = av2.samplen(1000)

Figure 6.2: Fitting a GMM with AugurV2 using a Python interface.

6.1.2 Using AugurV2

We use the AugurV2 library interface, contained in the Python package AugurV2, to perform

inference on models. Figure 6.2 contains an example of how to invoke AugurV2’s inference

capabilities. The first part of the code loads the data and hyper-parameters and the second

part invokes AugurV2.

Instances of the AugurV2Infer class provide methods for obtaining posterior samples (e.g.,

samplen). The class takes a path to a file containing the model. Once we have created an

instance of an AugurV2 inference object (av2), we need to indicate to the compiler what kind

of inference it should generate (via setCompileOpt and setUserSched). For example, we can

set the target for compilation as either the CPU or GPU (target). We can also customize the

inference algorithm by choosing our own inference schedule (via setUserSched).
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In this example, we decide to apply Elliptical Slice sampling [76] to the cluster means (with

ESlice mu) and Gibbs sampling to the cluster assignments (with Gibbs z). Hence, this sched-

ule indicates a compositional MCMC algorithm, where we apply different MCMC updates to

different portions of the model. This feature is inspired by the programmable inference pro-

posed by other probabilistic programming systems (e.g., Venture [68]). Indeed, we can also

use AugurV2 as a way to explore the performance of inference algorithms on different models.

For example, we can apply Gibbs sampling to update the cluster means as well and compare

its performance to Elliptical Slice sampling. If a user schedule is not specified, the compiler

uses a heuristic to select which combination of MCMC methods to use.

To compile the model, we supply the model arguments, hyper-parameters, and data (as

Python variables) in the order that they are specified in the model. Thus, the AugurV2 com-

piler is invoked at runtime. Consequently, given different data sizes and hyper-parameter set-

tings, the AugurV2 compiler may choose to generate a different inference algorithm. The com-

piler generates Cuda/C code depending on whether the target is the GPU or the CPU. The

native inference code is then further compiled using Nvcc (the Cuda compiler) or Clang into

a shared library which contains inference code for a specific instantiation of a model. After

compilation, the object av2 contains a collection of inference methods that wrap the native in-

ference code. The frontend handles the conversion of Python values to and from Cuda/C via

the Python CTypes interface. Hence, the user can work exclusively in Python. In this exam-

ple, we ask for 1000 samples (samplen). This can be used to construct a MAP estimate, i.e., a

point estimate of the mode of the posterior distribution.
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Figure 6.3: An overview of the AugurV2 compilation process. The phases of compilation include a fron-
tend (model to declarative inference), middle-end (declarative inference to executable inference), and back-
end (executable inference to native inference).
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6.1.3 Compilation Overview

Figure 6.3 gives an overview of the AugurV2 compilation process, illustrating the phases of

compilation and the ILs involved. Like a traditional compiler, the AugurV2 compiler uses

multiple ILs to guide the transformation of a high-level description of a probabilistic model

into a low-level description of an inference algorithm. Moreover, the structure of the AugurV2

compiler also mirrors that of a compiler for a traditional language, although the task of each

phase of the compiler is somewhat different.

Of course, we will need a semantics to justify the compilation process. As AugurV2 is a

simple language that intuitively expresses Bayesian networks, its semantics is not an issue,

in contrast to more expressive languages that provide higher-order functions and recursion.

Nevertheless, in Chapter 7, we will give AugurV2 semantics in terms of (Type-2) computable

distributions. This enables us to think of a compiler as a (computable) function that witnesses

the result that (Type-2) computable distributions are realizable by (Type-2) computable sam-

pling algorithms. In our case, the compiler realizes a MCMC sampling algorithm.

6.2 Frontend

In the first step of compilation, the compiler transforms a model expressed in the modeling

language into its corresponding density factorization in the Density IL. This follows standard

statistical practice, where models expressed using random variables (AugurV2’s modeling lan-

guage) are converted into its description in terms of densities (Density IL). The compiler can

analyze the density factorization and symbolically compute the conditionals (up to a normal-

izing constant) of the model for each model parameter (see Section 6.2.2) to support the gen-
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obj ::= λ(−→x ). fn

fn ::= pdist(
−→e ) | fn fn |

∏
x←gen

fn | let x = e in fn | [fn]x=e

e ::= x | i | r | dist(−→e ) | opn(−→e ) | e[e]
gen ::= e until e

σ ::= Int | Real
τ ::= σ | Vec τ | Mat σ

Figure 6.4: The Density IL encodes the density factorization of a probabilistic model.

eration of composable MCMC algorithms. The analysis is based off the one implemented in

our previous work [113], although the results of the analysis then were only used to generate

Gibbs samplers.

6.2.1 Representing Models: the Density IL

The syntax for the Density IL is summarized in Figure 6.4. In essence, it encodes standard

statistical notation for writing densities. As an example, the running example (Figure 6.1) is

encoded in the Density IL as

λ(K,N, µ0,Σ0, π,Σ, µ, z, y).
∏

k←0 until K

pN (µ0,Σ0)(µ[k])

∏
n←0 until N

pD(π)(z[n])
∏

n←0 until N

pN (µ[z[n]],Σ)(y[n] | µ[z[n]]) .

At the top-level, a model is represented as a single function λ(−→x ). fn with bindings −→x for

model hyper-parameters, other model constants and data, and a density function body fn. A

density function is either (1) the density of a primitive, parameterized distribution pdist(
−→e ),

(2) the composition of two density functions fn1 fn2 (i.e., multiplication of two density func-

132



tions), (3) a structured product
∏

x←gen fn that specifies a product of density functions ac-

cording to the comprehension x ← gen, (4) a standard let-binding let x = e in fn, or (5) an

Iverson bracket [fn]x=e that takes on the value inside the brackets when x = e is satisfied and

1 otherwise.

The Density IL is simply-typed. Base types include integers Int and reals Real. Com-

pound types include vectors Vec τ and matrices Mat σ. Thus, compound types such as vectors

of matrices are allowed, whereas matrices of vectors are rejected. The type system is used to

check simple properties. For example, the type system checks that densities are defined on the

appropriate spaces and that comprehension bounds are specified with integers.

6.2.2 Model Decomposition: Approximating Full-conditionals

The Density IL supports an analysis that statically approximates the full-conditionals (up to

a normalizing constant) of a probabilistic model. Throughout the rest of this section, the term

full-conditional will refer to an unnormalized full-conditional unless stated otherwise. Before

we describe the analysis, we will first make the connection between symbolically computing

the full-conditional of a variable and the Markov blanket of a variable in a Bayesian network.

We follow Bishop’s discussion [15].

Full-conditionals in Bayesian networks Consider the Bayesian network in Figure 6.5,

which has the following density factorization:

p(x1, x2, x3, x4, x5, x6) = p(x1) p(x2) p(x3 | x1) p(x4 | x1, x2) p(x5) p(x6 | x4) .
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Figure 6.5: Example where the Markov blanket of x4 is shaded.

We can read off the Markov blanket for the variable x4 from the Bayesian network, which in-

cludes its parents (x1 and x2), its children (x6), and its children’s parents (x5). Hence, the

Markov blanket of a variable in a Bayesian network is the minimal set of variables that makes

the variable conditionally independent of the rest of the Bayesian network. It is also possible

to compute the Markov blanket of a node symbolically by computing its full-conditional. For

example, the full-conditional of x4 is

p(x4 | x1, x2, x3, x5, x6) =
1

Z
p(x4 | x1, x2) p(x6 | x4)

Z =

∫
x4

p(x4 | x1, x2) p(x6 | x4, x5)dx4 ,

which is the result of an application of Bayes rule and canceling the densities not bound by

the integral. The variables mentioned in the simplified full-conditional expression comprise

x4’s Markov blanket. Hence, a density factorization representation of a probability distribu-

tion supports Markov blanket queries via a bound variable analysis. Note that the Markov

blanket indicates which variables are involved but do not give the functional form of the full-
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Figure 6.6: Plated graphical models (top), their unfoldings (bottom), and the corresponding structured
products.

conditional. As the AugurV2 compiler internally represents a model as its density factoriza-

tion, it can conveniently compute on the symbolic representation already.

The above correspondence can be extended to handle density factorizations with structured

products. In a Bayesian network, structured products can be represented using plate notation,

which repeats the graph structure within the plate. Figure 6.6 illustrates plated Bayesian net-

works (top), their unfoldings (bottom), and the corresponding structured products. Observe

that the variables inside the plate all share the same dependency structure, and hence, offers

a more compact representation of these relationships compared to the unfolded Bayesian net-

work. On the density factorization representation, variables within the same plate corresponds

to densities sharing the same structured product.

The density factorization can encode the same dependency structure in multiple ways. For

example, the structured product
N∏

n=1

p(xn) p(yn | xn)
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given in Figure 6.6a can also be written as

N∏
n=1

p(xn)
N∏

n=1

p(yn | xn) .

However, note that the unfactored encoding of the density cannot be expressed using plate no-

tation. Hence, we can think of the analysis that the AugurV2 compiler performs on the Den-

sity IL as converting ordinary Bayesian networks into plated Bayesian networks at compile-

time.

Analysis To compute full-conditionals, the compiler normalizes the model IL expression

by factoring it so that all structured products with the same comprehensions bounds use the

same structured product. This corresponds to the rule below.

∏
i←gen1

fn1

∏
i←gen2

fn2 →
∏

i←gen1

fn1 fn2 when gen1 = gen2

As a reminder, comprehension bound expressions in AugurV2 cannot refer to random vari-

ables and so are constant. If the compiler cannot determine the equality of comprehension

bounds, it will not be factored, and precision in the approximation of the full-conditional is

lost. For example, we can factor the GMM from our running example using the above rule as

( ∏
k←0 until K

pN (µ0,Σ0)(µ[k])

)( ∏
n←0 until N

pD(π)(z[n]) pN (µ[z[n]],Σ)(y[n] | µ[z[n]])

)

where we have omitted the top-level bindings.
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The compiler also implements the special factoring rule

∏
i←geni

fn→
∏

k←genk

∏
i←geni

[fn]k=z ,

where z is a Categorical variable with range genk. For example, factoring the GMM from our

running example according to this rule produces

( ∏
k←0 until K

pN (µ0,Σ0)(µ[k])

)( ∏
k←0 until K

∏
n←0 until N

[fn]k=z[n]

)

where fn = pD(π)(z[n]) pN (µ[z[n]],Σ)(y[n] | µ[z[n]]). Notably, after we apply the categorical

indexing rule, it is possible to apply the factoring rule again. Currently, the compiler attempts

to apply the categorical indexing rule first and then attempts to factor. The compiler tries

every possible factoring. Note that probabilistic programs are typically small so this strategy

is feasible in practice.

For the restricted language that we consider, we have found the two factoring rules to be

precise enough to be useful for practical models. The first rule reflects the essence of plate

notation—it can only capture fine-grained conditional relationships common to the entire

plate. Edges that cross between two different plates are fully-connected. The second rule cap-

tures a mixture-modeling pattern. However, there are conditional independence structures

found in practice that currently cannot be represented compactly by the AugurV2 compiler.

For instance, one notable conditional independence structure that cannot be represented

compactly is a sequential dependence as found in state-space models such as a HMM. As fu-

ture work, we would like to add support for this kind of dependency structure. For now, how-

ever, the lack of support for this dependency structure in the analysis is intentional. First,
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note that the plate notation as presented cannot express such a dependence. Importantly, this

is reflected in AugurV2’s modeling language, which does not provide sequential comprehen-

sions. In other words, we cannot express this kind of dependency structure in the first place.

Second, one would typically use a different inference algorithm for a sequential dependence

structure such as particle MCMC methods [4], which the AugurV2 compiler currently does

not support. Hence, even if the compiler could compactly represent this structure, it currently

cannot exploit it. The takeaway from this discussion is that through careful PPL language de-

sign and implementation (like the design and implementation of any other language), we can

encourage users to write only those models that the system can efficiently handle.

After the factoring rules have been applied, the AugurV2 compiler applies a bound variable

analysis to simplify the resulting full-conditionals. As a reminder, this mathematically corre-

sponds to an application of Bayes rule followed by canceling the densities in the denominator

that are not bound by the integral. For reference, the full-conditionals for the GMM are given

below, where we have omitted the comprehension bounds.

fnµ =
∏
k

(
pN (µ0,Σ0)(µ[k])

∏
n

[pD(π)(y | µ[z[n]])]k=z[n]

)

fnz =
∏
n

pD(π)(z[n])pN (µ[z[n]],Σ)(y[n] | µ[z[n]])

6.3 Middle-end

The AugurV2 middle-end converts a model encoded as its density factorization into a high-

level, executable inference algorithm. This phase uses two additional ILs. First, the Kernel IL

represents the high-level structure of a MCMC algorithm as a composition of basic MCMC
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sched α ::= λ(−→x ). k α

k α ::= (κ α) ku α | k α⊗ k α

ku ::= Single(x) | Block(−→x )

κ α ::= Prop (Maybe α) | FC | Grad (Maybe α) | Slice

Figure 6.7: The Kernel IL encodes the structure of an MCMC algorithm. It is parametric in α, which is
instantiated with successively lower level ILs that encode how the MCMC algorithm is implemented.

updates applied to the model’s full-conditionals. Second, the Low++ IL serves as the first

pass target for executable MCMC inference code. It is an imperative language that makes

sources of parallelism explicit, but abstracts away memory management. Importantly, we can

leverage domain-specific knowledge of each base MCMC update to directly generate parallel

code. Thus, we do not need to (re)discover parallelism at a lower-level of abstraction.

6.3.1 Representing Inference I: the Kernel IL

The AugurV2 compiler represents a MCMC algorithm as a composition of base updates in

the Kernel IL, whose syntax is summarized in Figure 6.7. As an example, the user schedule

presented in Figure 6.2 is encoded in the Kernel IL as

λ(K,N, µ0,Σ0, π,Σ, µ, z, x). Slice Single(µ) fnµ ⊗ FC Single(z) fnz ,

where fnµ and fnz correspond to the full-conditionals up to a normalizing constant.

The syntax

Slice Single(µ) fnµ

encodes a base update indicating that we apply Slice sampling to the variable µ with propor-
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tional full-conditional fnµ. The kernel unit ku specifies whether we should sample a variable x

by itself (i.e., Single(x)), or whether to sample a list of variables −→x jointly (i.e., Block(x)).

Sampling variables jointly, also known as blocking, is useful when those variables are heavily

correlated. The syntax

FC Single(z) fnz

encodes a base update indicating that we apply Gibbs sampling (using a closed-form full-

conditional) to the variable z with proportional full-conditional fnz. In general, a base update

κ ku α is parametric in the representation of the proportional full-conditional α. This enables

the compiler to successively instantiate α with lower-level ILs that expose more computational

details of inference (e.g., parallelism or memory usage). Given two MCMC updates k1 α and

k2 α, we can sequence (i.e., compose) the two updates with the syntax k1 α ⊗ k2 α. Sequenc-

ing is not commutative, i.e., the MCMC update k2 α ⊗ k1 α is different from k1 α ⊗ k2 α.

Currently, the compiler does not check that the composition of MCMC updates is correct,

e.g., check properties such as the irreducibility or aperiodicity of the MCMC algorithm. Static

checking of such properties would be an interesting direction for future work.

In addition to Slice (Slice) and closed-form full-conditional updates (FC), the Kernel IL

also supports proposal-based updates (Prop) and gradient-based updates (Grad). These up-

dates each contain an optional piece of code of type α that specifies the proposal and the gra-

dient respectively for the corresponding full-conditional that the base update is applied to. In

contrast, Slice and closed-form full conditional updates can be derived purely from the corre-

sponding model portion’s full-conditional.
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decl ::= name(−→x ){global : −→g , body : e, return : e}
s ::= e | x sk e | e[−→e ] sk e | s s
| if(e){s}{s} | loop lk (i← gen){s}

sk ::= = | +=
lk ::= Seq | Par | AtmPar
e ::= x | i | r | dist(−→e ).dop | opn(e1, . . . , en) | e[e]

dop ::= ll | samp | gradi

Figure 6.8: The Low++ IL is an imperative language that exposes parallelism in the computation of a
MCMC update, but abstracts away from details of memory management.

6.3.2 Specifying a High-level MCMC Algorithm

Once the compiler has decomposed the model according to its unnormalized full-conditionals,

it will determine which base MCMC updates can be applied to each full-conditional. In this

step, the compiler simply chooses which updates to apply and not how to implement them.

Thus, the output is a program in the Kernel IL with full-conditionals specified in the Density

IL. As a reminder, the user can supply the MCMC schedule, in which case the compiler will

check that it can indeed generate the desired schedule and fail otherwise. When a user does

not supply a MCMC schedule, the compiler uses a heuristic to accomplish this task. First, it

determines which variables it can perform Gibbs sampling with conjugacy relations. For the

remaining discrete variables, it will also apply Gibbs sampling by manually approximating

the closed-form full-conditional. For the remaining continuous variables, it will apply HMC

sampling to take advantage of gradient information.
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6.3.3 Representing Inference II: the Low++ IL

The Low++ IL expresses parallelism available in a MCMC algorithm. After the compiler gen-

erates code in this IL, the compiler only needs to reason at the level of an inference algorithm—

all aspects of the model are eliminated. Figure 6.8 summarizes the syntax for the Low++ IL.

The language is largely standard, so we highlight the aspects useful for encoding MCMC.

First, the IL provides additional distributions operations dop, including the log-likelihood

ll, sampling samp, and gradients gradi, where the integer i refers to the position of the ar-

gument to take the gradient with respect to. At the level of the Density IL, the distribution

operation was implicitly its density. For expressing inference algorithms, we may need other

operations on distributions such as sampling from them.

Second, the IL contains a dedicated increment and assign statement x += e. (We can also

increment and store to locations e[−→e ] += e.) We added this additional syntactic category be-

cause many MCMC updates require incrementing some quantity. For example, we may need

to count the number of occurrences satisfying some predicate to compute a conjugacy relation

or accumulate derivative computations after an application of the chain-rule. Because we hope

to generate parallel inference code, this separate syntactic category indicates to the compiler

that the increment and assign must be done atomically.

Third, the ILs annotate loops with whether they can be executed sequentially (Seq), in

parallel (Par), or in parallel given that all increment and assign operations are done atomi-

cally (AtmPar). For instance, we can annotate a loop that samples a collection of conditionally

independent variables in parallel (e.g., when implementing a conjugacy relation) with Par.

As we will see later when we describe AugurV2’s implementation of gradients (Section 6.4.4),

these computations will use the loop annotation AtmPar.
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MCMC update likelihood full-conditional gradient
MH ✓ x x

Gibbs x ✓ x
HMC ✓ x ✓

Reflective Slice ✓ x ✓
Elliptical Slice ✓ x x

Figure 6.9: A summary of base MCMC updates and the primitives required to implement them.

6.3.4 Primitive Support for Base MCMC Updates

The AugurV2 compiler currently supports user-supplied MH proposals, Gibbs updates, HMC

updates3, and (reflective and Elliptical) Slice updates. Fortunately, each base update can be

decomposed into yet further primitives, summarized in Figure 6.9. The rest of the function-

ality can be supported as library code—the primitives encapsulate the parts of the MCMC

algorithm that are specific to the full-conditional. This helps us manage the complexity of the

compiler. These primitives include (1) likelihood evaluation, (2) closed-form full-conditional

derivation, and (3) gradient evaluation. The compiler will implement these primitives in the

Low++ IL.

Likelihood evaluation It is straightforward to generate Low++ code that reifies a full-

conditional as it encodes a likelihood. Full-conditionals with structured products can be rei-

fied as AtmPar loops. For example, if we apply Elliptical Slice sampling to sample the cluster

means µk, then the code for the log-likelihood of the (unnormalized) full-conditional is:

log_likelihood_mu_k(K, N, mu_0, sigma_0, pi, sigma, y, mu, z) {
ll = 0;
ll += MvNormal(mu[k], mu0, sigma0).ll;
loop AtmPar (n <- 0 until N) {
ll += indicator(k == z[n], MvNormal(y[n], mu[z[n]], sigma)).ll;

3There is also a prototype of No-U-Turn sampling.
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}
return ll;

}

At the level of the GPU, we can implement these loops as a map-reduce. Nevertheless, at the

level of the Low++ IL, we simply annotate the parallelism available and defer the implemen-

tation details to a later phase of the compiler.

Closed-form full-conditional derivation When the compiler partitions the model,

it only computes a full-conditional that is known up to a normalizing constant. To obtain a

closed-form solution for the full-conditional, the compiler needs to solve for the normalizing

constant, which requires solving an integral. The AugurV2 compiler supports closed-form full-

conditionals in two cases.

First, like Bugs and Augur, AugurV2 exploits conjugacy relations. Recall that a conjugacy

relation exists when the form of the conditional distribution p(θ | x) takes on the same func-

tional form as p(θ). This bypasses the need to compute the normalizing constant. There is a

well-known list of conjugacy relations. Consequently, the AugurV2 compiler supports conju-

gacy relations via table lookup. For example, there is a conjugacy relation between a multi-

variate Normal prior and multivariate Normal likelihood in the GMM. In general, computing

a conjugacy relations requires traversing the involved variables and computing some statistic.

We provide the conjugacy relation for the GMM cluster means below for our running exam-
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ple.

µ′k = Σ′(Σ−10 µ0 + nkΣ
−1ȳ)

nk =

N∑
n=1

[zn = k]

Σ′ = (Σ−10 + nkΣ
−1)−1

The compiler may fail to detect a conjugacy relation if (1) the approximation of the full-

conditional is imprecise or (2) the compiler needs to perform mathematical rearrangements

beyond structural pattern matching. It would be interesting to see if we can improve upon

the latter situation by combining AugurV2 with a computer algebra system (CAS) as other

systems have done (e.g., [77]) and leveraging the CAS to solve the integral, but we leave this

for future work.

Second, AugurV2 can also approximate the closed-form full-conditional for a discrete vari-

able as a finite sum, even if a conjugacy relation does not exist. That is, it can generate code

that directly sums over the support of the discrete variable up to some predetermined bound

or when we have encountered most of the probability mass (e.g., using Markov’s inequality).

p(z = k | y) = p(z = k) p(y | z = k)∑
k′ p(z = k′) p(y | z = k′)

Below, we give Low++ code that implements this marginalization for the z variables in our

GMM running example. In the example, we assume a that there is a function normalize_and_sample

that normalizes a vector to obtain a pmf and then samples from it.

fc_z(K, N, mu_0, sigma_0, pi, sigma, y, mu, z) {
loop Par (n <- 0 until N) {
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norm = 0;
loop AtmPar (k <- 0 until N) {
prob = Categorical(z[n], pi).ll * MvNormal(y[n], mu[k], sigma).ll;
pmf[k] = prob;
norm += prob;

}
z[n] = normalize_and_sample(pmf, norm);

}
}

Gradient evaluation The compiler implements source-to-source, reverse-mode automatic

differentiation (AD) to support gradient evaluation of the model likelihood. For more back-

ground, we refer the reader to the literature on AD (e.g., [7, 46]). We summarize some design

decisions that one make when implementing gradients below. We will write f to refer to a

mathematical function and Af to refer to the program code that implements f to distinguish

the two.

• (Symbolic vs. AD). One reason for implementing AD over symbolic differentiation is
so that the complexity of the gradient code A▽f is proportional to the complexity of
the original code Af . In contrast, symbolic differentiation can lead to code that is ex-
ponential in the complexity of the original code Af . However, symbolic derivatives can
interoperate with computer algebra systems, whereas AD cannot.

• (Forward vs. Reverse). Suppose f : Rn → Rm. Forward-mode AD requires n passes
over the original function Af to compute the gradient ▽f . Reverse-mode AD requires
m passes over the original function Af and a stack known as the Wengert tape [7] to
keep track of the history of computations to computes the gradient ▽f . For a function
such as a model log-likelihood L : Rn → R, reverse-mode AD requires one pass over the
original function at the cost of increased memory usage compared to forward-mode AD.

• (Instrumentation vs. source-to-source). AD can be implemented by instrumenting the
original program or as a source-to-source transformation. The former can be easier to
implement in languages that support operator overloading, i.e., overload all primitive
operations to compute both the original function and its derivative. The latter requires
a compiler pass. Nevertheless, there are opportunities for optimization. For example,
a compiler can leverage that the semantics of parallel comprehensions are independent
of the order of evaluation and optimize away the stack for reverse-mode AD when it is
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(x, y) = ȳ += x̄

(x, i) = 0

(x, r) = 0

(x, dist(y1, . . . , yn)) = ȳ1 += x̄ ∗ dist(y1, . . . , yn).grad1
. . .

ȳn += x̄ ∗ dist(y1, . . . , yn).gradn
(x, opn(y1, . . . , ym)) = ȳ1 += x̄ ∗ opn(y1, . . . , ym).grad1

. . .

ȳn += x̄ ∗ opn(y1, . . . , ym).gradm

(x, y1[y2]) = ȳ1[y2] += x̄

(a) The adjoint expression translation. A variable notated x̄ is the adjoint of variable x. It contains the
result of the partial derivative with respect to x.

pdist(−→e )(x) = (x, dist(−→e ))
fn1 fn2 = fn2; fn1

let x = e in fn = x = e; fn; (x, e)∏
x←gen

fn = loop AtmPar (x← gen){fn}

[fn]C = if(C){fn}{0}

(b) The adjoint density function translation. The absence of complex control-flow in the Density IL simpli-
fies the implementation.

Figure 6.10: The construction of an adjoint program for source-to-source, reverse-mode AD in AugurV2
from the Density IL to the Low++ IL.
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translating this construct. This is an instance of where providing parallel comprehen-
sions as a language construct can potentially increase the efficiency of inference code.

Taking the design decisions into account, the AugurV2 compiler implements reverse-mode AD

as a source-to-source transformation from the Density IL to the Low++ IL. We highlight two

differences as compared to more conventional choices.

First, the AugurV2 compiler implements source-to-source AD, in contrast with many other

systems [19] that implement AD by instrumentation. This choice was largely motivated by the

lack of complex control flow in the AugurV2 modeling language, which is the primary diffi-

culty of implementing source-to-source AD. Here, the AugurV2 compiler leverages the seman-

tics of parallel comprehensions to optimize the gradient code. Moreover, we found that it was

easier to support the composition of different MCMC algorithms by directly generating code

that implements gradients when needed, instead of redesigning the entire system runtime to

support the instrumentation required for AD. We also found that this choice makes it easier

to support compilation to the GPU, which cannot (efficiently) support a sophisticated run-

time.

Second, the AugurV2 compiler implements source-to-source AD as a translation from one

language to another (Density IL to Low++ IL), as opposed to a transformation on the same

language. In a typical setting, one applies AD to code written in a general-purpose program-

ming language. In our setting, we only need to apply AD to models written in a restricted

modeling language. Hence, for simplicity, we can choose the ILs that make the translation as

simple as possible (see Figure 6.10).

Figure 6.10 summarizes the source-to-source, reverse-mode AD translation implemented

by the AugurV2 compiler. The input program should be transformed to contain only simple

expressions. The output is an adjoint program, i.e., a program that computes the derivative.
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The translation is quite simple—it fits on a single page. Below, we provide an example adjoint

program for taking the partial derivative of the log-likelihood of the model with respect to the

cluster means.

grad_log_likelihood_mu(K, N, mu_0, sigma_0, pi, sigma, y, mu, z) {
adj_ll = 1;
loop AtmPar (n <- 0 until N) {
t1 = y[n];
t2 = z[n];
t3 = mu[t2];
adj_t1 += adj_ll * MvNormal(t1, t3, sigma).grad1;
adj_t3 += adj_ll * MvNormal(t1, t3, sigma).grad2;
adj_mu[t2] += adj_t3;

}
loop AtmPar (k <- 0 until K) {
t0 = mu[k]
adj_t0 += adj_ll * MvNormal(t0, mu0, sigma0).grad1;
adj_mu[k] += adj_t0;

}
return adj_mu;

}

6.4 Backend

The AugurV2 backend performs the last step of compilation and generates native inference

code. As we mentioned before, the target of compilation for the AugurV2 compiler is a C/Cuda

runtime library that supports operations on vectors/matrices and distributions. Hence, the

target of compilation for AugurV2 is minimal compared to other PPL’s, which implement al-

most all the functionality of inference in this layer.

Except for the final step where the compiler synthesizes a complete MCMC algorithm and

eliminates the Kernel IL, the backend phase is largely similar to a traditional compiler pass in

terms of the kinds of transformations it performs. The AugurV2 backend (1) performs size-

inference to statically bound the amount of memory usage an AugurV2 inference algorithm
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consumes and (2) reifies parallelism. Towards this end, the compiler introduces the Low-- IL

to handle memory management and the Blk IL to handle parallelization. The Low-- IL con-

ceptually follows a Partitioned Global Address Space (PGAS) programming model. We have

not investigated the possibility of using existing languages based on the PGAS model such

as Chapel [20] or X10 [101], but hope to do so in future work to extend the capabilities of

AugurV2 to distributed settings. We also have not investigated how to leverage existing func-

tional languages that compile to the GPU such as Futhark [47] and Nova [22]. The current

backend serves as a prototype to investigate CPU and GPU compilation of MCMC inference

algorithms for fixed-structure Bayesian networks.

6.4.1 Representing Inference III: the Low-- IL

The Low-- IL is structurally the same as the Low++ IL (Figure 6.8), except that programs

must manage memory explicitly. However, details of how to reify parallelism are still left ab-

stract.

6.4.2 Size Inference

As a reminder, AugurV2 programs express fixed-structure models. Consequently, for efficiency

reasons, we can bound the amount of memory an inference algorithm will use and allocate

it up front. Moreover, for GPU inference, it is necessary to determine how much memory an

inference algorithm will consume up front because we cannot dynamically allocate memory

while executing GPU code. To accomplish this, the compiler first makes all sources of mem-

ory usage explicit. For example, primitives such as vector addition that produce a result that

requires allocation will be converted into a side-effecting primitive that updates an explicit

150



b ::= seqBlk {s} | parBlk lk (x← gen) {s} | loopBlk (x← gen) {b}
| eacc = sumBlk e0 (x← gen) {s ; return e}

Figure 6.11: The Blk IL exposes the different kinds of parallelism, including data-parallel (parblk), reduc-
tion (sumblk), and the absence of parallelism (seqblk).

destination. These functional primitives made the initial lowering step from model to infer-

ence tractable and can be removed at this step. Second, the compiler performs size inference

to determine how much memory to allocate. Currently, the compiler does not support stan-

dard optimizations such as destructive updates.

6.4.3 Representing Parallelism: the Blk IL

When AugurV2 is set to target the GPU, the compiler produces Cuda/C code from Low--

IL code. Here, the compiler can finally leverage the loop annotations present in the infer-

ence code. As a reminder, the loops were annotated when the compiler first generated a base

MCMC update. At this point, the compiler chooses how to use utilize the GPU. As with

size-inference and memory management, this step is also similar to a more traditional code-

generation step. Towards this end, the compiler introduces an additional IL called the Blk IL.

The syntax is summarized in Figure 6.11.

The design of the IL is informed by the SIMD parallelism provided by a GPU. For exam-

ple, the construct parBlk lk (x ← gen) {s} indicates a parallel block of code, where gen copies

of the statement s (in the Low-- IL) can be run in parallel according to the loop annotation

lk. This corresponds to launching gen threads on the GPU. The syntax eres = sumBlk e0 (x ←

gen) {s ; return e} indicates a summation block, where the body s maps some computation

across gen and returns the expression e. The result is summed with e0 as the initial value and
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is assigned to the expression in eres. Hence, this corresponds to a GPU map-reduce. The con-

struct loopBlk (x ← gen) {b} loops a block b. Thus, this corresponds to launching gen paral-

lelized computations encoded in b in sequence. The construct seqBlk {s} encodes a sequential

block of code consisting of a statement s. This corresponds to the absence of parallelism.

6.4.4 Parallelizing Code

To parallelize the body of a declaration in the Low-- IL, the compiler first translates it into

the Blk IL. Every top-level loop we encounter in the body is converted to a parallel block

with the same loop annotation. The remaining top-level statements that are not nested within

a loop are generated as a sequential block. Loop blocks and summation blocks are not gener-

ated during the initial translation step, but are generated as the result of additional transfor-

mations. The current parallelization strategy is a proof-of-concept that illustrates how to reify

the parallelism specific to the base MCMC updates the compiler generates and we expect that

there are many opportunities for improvement here. We summarize some optimizations that

we have found useful in the context of the MCMC algorithms generated by AugurV2.

Commuting loops As a reminder, AugurV2 compiles at runtime so it has access to the

sizes of the data and parameters. It can use this information to commute IL blocks of the

form

parBlk Par (k <- 0 until K) {
loop Par (n <- 0 until N) {
...

}
}

when K ≪ N so that the code utilizes more GPU threads.
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Inlining The compiler inlines primitive functions that are implemented with loops. For ex-

ample, the compiler can inline the sampling of a Dirichlet distribution, which samples a vector

of Gamma distributed variables and then normalizes the vector (with normalize).

sample_dirichlet(alpha) {
loop Par (v <- 0 until V) {
x[v] = Gamma(alpha).samp;

}
normalize(x);
return x;

}

Inlining expose additional sources of parallelism. For example, if we inline the sampling of

the Dirichlet distribution sample_dirichlet above in a ParBlk, then the loops may be com-

muted.

Conversion to summation blocks Lastly, the compiler analyzes parallel blocks marked

atomic parallel to see which should be converted to summation blocks. To illustrate this more

concretely, suppose we have the following code produced by AD:4

parBlk AtmPar (n <- 0 until N) {
adj_var += adj_ll * Normal(y[n], 0, var).grad3;

}

Parallelizing this code by launching N threads leads to high contention in updating the vari-

able adj_var. Instead, the compiler estimates the contention rate as the ratio of the number

of threads we are parallelizing with (i.e., N in this example) compared to the number of loca-

4This code could arise from a model with density factorization pExp(σ
2) pN (x∗

n | 0, σ2) where
pExp(σ

2) is an Exponential distribution and pN (x∗
n | 0, σ2) is a Normal distribution with variance σ2.

Importantly, any model where there is a higher-level parameter (e.g., the variance parameter) that
controls the shape of lower-level distributions (e.g., the likelihood), will result in gradient code of this
form.
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tions the atomic additions are accessing (i.e., 1 in this example). If the ratio is high as it is in

this example (N/1), then the compiler converts it to a summation block.

adj_var = sumBlk adj_var (n <- 0 until N) {
t = adj_ll * Normal(y[n], 0, var).grad3;
return t;

}

Importantly, the compiler is invoked at runtime so the symbolic values can be resolved.

The compiler uses the following basic heuristic to optimize a block of code. First, it inlines

primitive function as described above. If inlining code results in a loop being commuted or

a conversion to a summation block, then it stops and returns that block of code. Otherwise,

it does not inline and returns the block as is. We have not investigated other optimizations,

different orderings of the optimizations, or more generally, a cost-model to guide optimiza-

tion. As an example of an area for improvement, consider the following piece of code, which

the AugurV2 compiler will currently fail to parallelize well. This code could result from in-

lining a gradient computation for a Dirichlet distribution (ignoring the normalizing constant)

evaluated at the vector x[k] for each k with concentration parameter alpha.

...
parBlk AtmPar (k <- 0 until K) {

loop AtmPar (v <- 0 until V) {
adj_x[k][v] += (alpha[v] - 1) / (x[k][v]);

}
}
...

In this example, the compiler would parallelize over the outer-loop, which would be inefficient

if K ≪ V (e.g., consider a model such as LDA that has K topics and V words in the vocabu-

lary). By inspection, a better strategy would be to parallelize over the inner loop.
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Once the compiler has translated the body into the Blk IL and performed the optimiza-

tions above, it will generate Cuda/C code. The Blk IL maps in a straightforward manner onto

Cuda/C code. In general, such a compilation strategy will generate multiple GPU kernels for

a single Low-- declaration.

6.4.5 Synthesizing a Complete MCMC Algorithm

In this step, the compiler eliminates the Kernel IL and synthesize a complete MCMC algo-

rithm. More concretely, the compiler generates code to compute the acceptance ratio (AR)

associated with each base MCMC update.

Recall that a base MCMC update targeting the distribution p(x) can be thought of as a

MH algorithm with a proposal q(x → x′) of a specific form. To ensure that the distribution

p(x) is sampled from appropriately, the proposals are taken (or accepted) with probability

α(x, x′) = min

(
1,

p(x′)q(x→ x′)

p(x)q(x′ → x)

)
,

where α(x, x′) is known as the AR. If the proposal is not taken, it is said to be rejected. Some

base MCMC updates such as Gibbs updates are always accepted, i.e., have AR α(x, x′) = 1

for any x and x′. Thus, the acceptance ratio does not need to be computed for such updates.

Other MCMC updates such as HMC updates require the computation of the AR. The com-

piler generates code that computes the AR after every base update that requires it. Because

such base updates can be rejected, the compiler maintains two copies of the MCMC state

space, one for the current state and one for the proposal state, and enforces the invariant that

the two are equivalent after the execution of a base MCMC update. The invariant ensures

that the execution of a base MCMC update always uses the most current state.
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6.5 System Implementation

In this section, we summarize AugurV2’s system implementation, which includes the compiler,

the user interface, and the runtime library.

6.5.1 Compiler implementation

The AugurV2 compiler is written in Haskell. The frontend is roughly 950 lines of Haskell

code, the middle-end is roughly 1860 lines, and the backend is roughly 3420 lines. The entire

compiler is roughly 9000 lines, which includes syntax, pretty printing, and type checking. We

found the backend to be the most tedious to write, particularly the details of memory transfer

between the Python interface and Cuda/C.

6.5.2 Runtime library

The AugurV2 runtime library is written in Cuda/C. It provides functionality for primitive

functions, primitive distributions, additional MCMC library code, and vector operations. The

libraries are written for both CPU and GPU inference. We believe there is room for improve-

ment, particularly in the GPU inference libraries. For example, in the GMM example, we

need to perform the same matrix operation on many small matrices in parallel. In contrast,

the typical GPU use case is to perform one matrix operation on one large matrix.

The runtime representation of AugurV2 vectors are flattened. That is, AugurV2 supports

vectors of vectors (i.e., ragged arrays) in its surface syntax, but the eventual representation of

the data will be contained in a flattened, contiguous region of memory. This enables us to use

a GPU efficiently when we want to map an operation across all the data in a vector of vectors,

without following a pointer-directed structure. For this reason, the runtime representation of
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vectors of vectors pairs a separate pointer-directed structure with a flattened contiguous array

holding the actual data. The former provides random access capabilities, while the latter en-

ables an efficient mapping operation across the data structure. The flattened representation is

also beneficial for CPU inference algorithms because of the increased locality.

6.6 Evaluation

In this section, we evaluate the design of AugurV2’s compiler in terms of its (1) extensibility

and (2) inference capabilities. We also compare against Jags (a variant of Bugs) and Stan,

systems with similar modeling languages.

6.6.1 Extensibility

As MCMC methods are improved, it is important to design systems that can be extended to

incorporate the latest advances. In this part of the evaluation, we comment on the extensibil-

ity of AugurV2’s design in supporting base MCMC updates.

To support a new base update, we need to (1) add a node to the Kernel IL AST and mod-

ify the parser, (2) extend common Kernel IL operations to support the new node, and (3)

implement the Cuda/C code for the base update against the AugurV2 runtime. From expe-

rience, we have found the first two items to be simple, provided that the base update uses the

MCMC primitives already implemented. For instance, once we have an implementation of

AD, we can easily support both reflective Slice sampling and HMC using the same AD trans-

formation. In contrast, supporting Gibbs updates were difficult because we need to implement

a separate code-generator for each conjugacy relation. Fortunately, there is a well-known list

of conjugacy relations so this can be done once. The third item is between 0 lines of C code
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(for a Gibbs update) to 30 lines of C code ( e.g., an implementation of Leapfrog integration

for the HMC update) depending on the complexity of the base update.

6.6.2 Performance

In this part of the evaluation, we compare AugurV2 against Jags and Stan, concentrating on

how design choices made in the AugurV2 system—(1) compositional MCMC inference, (2)

compilation, and (3) parallelism—compare against those made in Jags and Stan. Appendix B

contains more details. We consider three probabilistic models commonly used to assess the

performance of PPLs (e.g., see the Stan user manual [106]): (1) Hierarchical Logistic Regres-

sion (HLR), (2) Hierarchical Gaussian Mixture Model (HGMM), and (3) Latent Dirichlet Al-

location (LDA). We ran all the experiments on an Ubuntu 14.04 desktop with a Core-i7 CPU

and Nvidia Titan Black GPU.

Models The generative model for a HLR is summarized below. It is a model that can be

used to construct classifiers.

σ2 ∼ Exponential(λ)

b ∼ Normal(0, σ2)

θk ∼ Normal(0, σ2)

yn ∼ Bernoulli(sigmoid(xn · θk + b))

The generative model for a HGMM is summarized below. It is a model that clusters points
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on D-dimensional Euclidean space.

π ∼ Dirichlet(α)

µk ∼ Normal(µ0,Σ0)

Σk ∼ InvWishart(ν,Ψ)

zn ∼ Categorical(π)

yn ∼ Normal(µzn ,Σzn)

The generative model for LDA is summarized below. It is a model that can be used to infer

topics from a corpus of documents.

θd ∼ Dirichlet(α)

ϕk ∼ Dirichlet(β)

zdj ∼ Categorical(θd)

wdj ∼ Categorical(ϕzdj )

Compositional MCMC To assess the impact of generating compositional MCMC algo-

rithms, we use the HLR model and the HGMM model. The HLR model contains only con-

tinuous parameters. Hence, a system such as Stan, which is specifically designed for gradient-

based MCMC algorithms, should perform well. The HGMM model is fully-conjugate. Hence,

a system such as Jags, which is specifically designed for Gibbs sampling, should perform well.

For the HLR model, we visually verified the trace plots (i.e., a plot of the values of the pa-

rameter from one sample to the next) of each system. On the German Credit data set [64], we
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found that AugurV2 configured to generate a CPU HMC sampler with manually picked pa-

rameters to be roughly 25 percent slower than Stan set to use the same HMC sampling algo-

rithm in generating 1000 samples (with no thinning). It takes roughly 35 seconds for Stan to

compile the model (due to the extensive use of C++ templates in its implementation of AD),

whereas AugurV2 compiles almost instantaneously. It would be interesting to see if there are

additional optimizations that can be applied during compilation to improve AugurV2’s im-

plementation of AD. Although fast compilation times are not an issue in our setting where

we just need to compile the model (and query) once, this may become more of an issue in

structure learning [81]. Jags had the poorest performance as it defaults to adaptive rejection

sampling.

Flexible inference Compared to both Jags and Stan, AugurV2 has more flexible infer-

ence. For example, in a HLR, we can update the variance (σ2) and offset (b) parameters with

a Gaussian proposal centered at the current location, while using the more computationally

intensive HMC to sample the coefficients (θ). Indeed, this corresponds to HMC practice,

where we use simpler MCMC methods to update higher-level parameters [18]. In contrast,

Jags will perform adaptive rejection sampling on all variables and Stan will apply a variant of

HMC called No-U-Turn to the entire model.

Figure 6.12 contains plots of the log-predictive probability versus training time for a 2D-

HGMM model with 1000 synthetically-generated data points and 3 clusters. A log-predictive

probability plot can be seen as a proxy for learning—as training time increases, the algorithm

should be able to make better predictions. We configured AugurV2 to generate 3 different

MCMC samplers corresponding to sampling the cluster locations with Elliptical Slice updates,

Gibbs updates, and HMC updates. The plot shows that every system converges to roughly
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Figure 6.12: The log-predictive probability of a HGMM when using the samplers generated by AugurV2,
Jags, and Stan. We use AugurV2 to generate 3 different MCMC inference algorithms. We draw 150 sam-
ples using each system with no thinning. Stan requires an initial tuning period of 50 samples.

the same log-predictive probability, the difference being the amount of time it takes. For in-

stance, Jags and AugurV2’s Gibbs sampler have better computational performance because

they can leverage the conjugacy relation, whereas Stan uses gradient-based MCMC.

Compilation For the HLR model, which contains only continuous variables, we set AugurV2

to generate a HMC sampler for the entire model and compare to Stan’s implementation. Jags

cannot generate a HMC sampler and so we do not compare against it. On the German Credit

data set [64], we found AugurV2 to be roughly 25 percent slower than Stan in generating 1000

samples. Note that Stan is specifically tailored to generate gradient-based MCMC and it takes

roughly 35 seconds to compile the model, whereas AugurV2 generates more flexible inference

algorithms and compiles almost instantaneously. As the cost of HMC is dominated by the

cost of computing the gradient, we hope that the performance of AugurV2’s AD implementa-

tion as well as of the runtime library can be improved by leveraging ideas from the implemen-
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(K,D,N) AugurV2 Jags Speedup
(3, 2, 1000) 0.2 1.1 ∼ 5.5x
(3, 2, 10000) 1.4 17.4 ∼ 12.4x
(10, 2, 10000) 3.7 51.5 ∼ 13.9x
(3, 10, 10000) 15.6 93.0 ∼ 5.9x
(10, 10, 10000) 17.8 301.9 ∼ 16.9x

Figure 6.13: Approximate timing results comparing the performance of AugurV2’s compiled Gibbs sampler
versus Jag’s Gibbs sampler on a HGMM with varying clusters (K), dimensions (D), and data points (N).

tation of Stan, but we leave that for future work.

Figure 6.13 summarizes the timing results to generate 150 samples for a HGMM on a syn-

thetically generated data set for a varying number of clusters, dimensions, and data points.

We set AugurV2 to generate a Gibbs update for all the variables and compare against Jags’

Gibbs sampler so that both are running the same high-level inference algorithm. The dif-

ference is that Jags reifies the Bayesian network structure and performs Gibbs sampling on

the graph structure, whereas AugurV2 directly generates code that performs Gibbs sampling

using symbolically computed conditionals. The experiments show that AugurV2’s approach

outperforms Jags’ approach. We also compared to the performance of Stan as well as checked

the log-predictive probabilities for all three systems, but didn’t include timing results for Stan

because they aren’t particularly meaningful. For instance, we applied Stan’s No-U-Turn sam-

pler to the largest model with 10 clusters in 10 dimensions, for which it takes approximately

19 hours to draw 150 samples. Notably, Stan does not natively support discrete distributions

so the user must write the model to marginalize out all discrete variables, which increases the

complexity of computing gradients. This highlights the importance of being able to support

compositional MCMC algorithms.
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Data set-Topics CPU (sec.) GPU (sec.) Speedup
Kos-50 159 60 ∼ 2.7x
Kos-100 265 73 ∼ 3.6x
Kos-150 373 82 ∼ 4.6x
Nips-50 504 161 ∼ 3.1x
Nips-100 880 168 ∼ 5.2x
Nips-150 1354 235 ∼ 5.8x

Figure 6.14: Approximate timing results comparing the performance of AugurV2’s CPU Gibbs inference
against GPU Gibbs inference for LDA. The Kos data set [64] has a vocabulary size of 6906 and contains
roughly 460k words. The Nips data set [64] has a vocabulary size of 12419 and roughly 1.9 million words.

Parallelism Jags and Stan support parallel MCMC by running multiple copies of a chain

in parallel. In contrast, AugurV2 supports parallel MCMC by parallelizing the computations

within a single chain. As these methods are not comparable, we will focus on AugurV2’s GPU

inference capabilities. For these experiments, we will use all three models. We found that

GPU inference can improve scalability of inference, but it is highly model-dependent.

For example, when we fit the HLR to the German Credit data set using AugurV2’s GPU

HMC sampler, the computational performance was roughly an order of magnitude worse com-

pared to AugurV2’s CPU HMC sampler. This can be attributed to the small data set size

(roughly 1000 points) and the low dimensionality of the parameter space (26 parameters).

When we apply the GPU HMC sampler to the Adult Income data set [64], which has roughly

50000 observations and 14 parameters, the gradients were parallelized differently due to the

summation block optimization—it is more efficient to run 14 map-reduces over 50000 elements

as opposed to launching 50000 threads all contending to increment 14 locations.

In contrast to a model such as a HLR, models such as HGMM and LDA have much higher

dimensional spaces. Indeed, the number of latent variables scales with the number of data

points. In these cases, GPU inference was much more effective. Figure 6.14 summarizes the

(approximate) timing results for AugurV2’s performance on LDA across a variety of data
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sets, comparing its CPU Gibbs performance against its GPU Gibbs performance. We also

checked the log-predictive probabilities to make sure that they were roughly the same for the

CPU and GPU samplers. The general trend is that the GPU provides more benefit on larger

data sets, with larger vocabulary sizes, and with more topics. We have also tried this with the

HGMM and found the same general trend. We could not get Jags or Stan to scale to LDA,

even for the smallest data set.

6.7 Related Work

The design of AugurV2 builds upon a rich body of prior work on PPLs. In this section, we

compare AugurV2’s design with related PPLs, using the (model, query, inference) tuple (i.e., the

probabilistic modeling and inference tuple) as a guide. At a high-level, PPL modeling lan-

guages can be classified according to whether they (1) express well-known probabilistic model-

ing abstractions such as Bayesian networks [19, 108] as in AugurV2 or (2) are embedded into

general-purpose programming languages [119, 84, 42, 120, 82, 58]. Most PPLs provide fixed

queries and inference strategies, although languages such as Edward [112] and Venture [68]

explore more expressive query and inference strategies. We discuss related systems in more

depth now.

6.7.1 Related Systems

Language: Bugs To our knowledge, Bugs was one of the first probabilistic programming

systems designed for Bayesian probabilistic modeling [108, 67]. The original BUGS language

provides an imperative modeling language for expressing Bayesian networks and uses Gibbs

sampling to explore posterior distributions. Hence, it supports fixed queries with a fixed infer-
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ence strategy.

The AugurV2 modeling language is inspired by the BUGS modeling language. Both lan-

guages are first-order and are designed to be closer to mathematical notation. However, AugurV2

provides parallel comprehensions instead of an imperative for loop that Bugs provides. Infer-

ence in the BUGS systems is performed by reifying the Bayesian network corresponding to

a model described in the language, and then querying the network structure at runtime to

figure out which variables are conditionally independent of others to perform Gibbs updates.

In contrast, AugurV2 approximates the conditional independence at compile-time and uses

this information to directly generate code that samples conditionally independent variables in

parallel. Hence, the runtime representation of an AugurV2 inference algorithm is much more

compact and regular.

Language: Stan Stan [19] is another PPL similar in design to both BUGS and AugurV2.

Again, the major difference between the Stan language and AugurV2 language is that AugurV2

uses parallel comprehensions. A minor difference is that Stan does not support vectors of vec-

tors so users must flatten their models. Moreover, Stan does not natively support discrete

random variables as its primary method of inference uses No-U-Turn sampling, a variant of

HMC, which works only on continuous parameter spaces. The latest version of Stan supports

Automatic Differentiable Variational Inference. Hence, Stan supports several fixed inference

strategies. In contrast, AugurV2 provides a family of inference algorithms based on MCMC

sampling.

Factor graph approaches Several other probabilistic programming systems use factor

graphs as the basis of inference, including Infer.net [73], Factorie [69], and Dimple [48]. Both
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Factorie and Dimple provide a library API for constructing factor graphs. Infer.net provides a

surface level language that can be compiled into a factor graph for the purposes of inference.

We consider this approach somewhat less-declarative as the user needs to manually construct

the factor graph. These systems implement inference strategies that can take advantage of

the factor graph structure such as message-passing algorithms. Again, the difference with

AugurV2 is mainly that these systems are limited to uniformly applying a single inference

method to the entire model. Nevertheless, they support several fixed inference strategies.

Symbolic approaches The Hakaru language embeds probabilistic programming in Haskell,

and hence, provides a much richer modeling language [77]. Nevertheless, users should not use

Haskell features such as recursion or IO when inside the Hakaru subset. Hence, the expressiv-

ity of Hakaru is similar to that of modeling languages such as AugurV2. Hakaru implements

posterior inference symbolically, i.e., it performs exact inference. Like AugurV2, Hakaru has

a language for representing inference algorithms that can be analyzed and optimized. Un-

like AugurV2, the language Hakaru uses is much richer. In fact, the inference language is the

modeling language itself. Consequently, Hakaru can express more complicated inference algo-

rithms instead of AugurV2’s strategy of composing base MCMC kernels. Indeed, the Hakaru

system interacts with a computer algebra system (CAS) to derive facts useful for posterior in-

ference. In contrast, the Hakaru representation does not have access to the lower-level details

of memory management and order-of-evaluation. Hakaru is also not compiled.

The Psi system [37] is similar to Hakaru in that it performs symbolic inference. Unlike

Hakaru, Psi identifies a core subset of mathematical transformations that are useful for solv-

ing integrals arising in Bayesian inference practice, instead of appealing to a more general

CAS. By leveraging the extra structure, the Psi system has been demonstrated to handle
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larger models than Hakaru. The Psi system handles loops by unfolding, which leads to scala-

bility issues. In summary, these languages explore the feasibility of supporting exact inference

queries on a restricted modeling language. It would be interesting to see how these techniques

can be integrated into the implementation of AugurV2. Notably, the Psi system has uses an

intermediate representation similar to AugurV2’s Density IL.

General-purpose embeddings Another family of PPLs adds to a general, Turing-complete

language (1) sampling and (2) probabilistic queries. The idea is that standard programming

languages are already themselves a good abstraction for expressing probabilistic models. Hence,

languages in this family embrace traditional programming language constructs, such as higher-

order functions, recursion, state, and etc. The challenge once programs are proposed as an

alternative to traditional abstractions (e.g., probabilistic graphical models) is to develop effi-

cient inference techniques.

The earliest of these languages such as Stochastic Lisp [58] and IBAL [89, 90] add discrete

distributions. As only discrete distributions are involved, inference can be performed by sum-

mations. This includes techniques such as variable elimination. However, many practically

useful models require continuous distributions. Once continuous distributions are added to a

programming language, new inference techniques need to be developed.

The Church [42] probabilistic programming language is embedded in Scheme and proposes

MCMC inference on program traces. Church restricts primitive distributions to only those

that have densities, called exchangeable random primitives, but otherwise allows the full power

of the Scheme language to build models. Thus, each execution trace of a Church program

can be associated with the likelihood of the random choices made along that trace. Conse-

quently, we can perform MCMC sampling on these traces. The challenge is to develop effi-
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cient inference in the space of program traces. The first version of Church implemented MH

sampling with default proposals. This approach does not scale to more complex models in

higher-dimensional parameter spaces.

Other trace-based MCMC systems have been developed, including Anglican [119] and

R2 [82]. The former proposes particle MCMC approaches and show that this approach can

leverage OS-level concurrency. As a reminder, a particle MCMC estimates the posterior dis-

tribution via a weighted set of samples called particles (on the order of 10 particles). Anglican

leverages OS-level concurrency to track each particle. The latter improves the efficiency of

MH sampling by using static analysis (i.e., weakest precondition calculation) to rule out im-

possible states, and thus, craft tailored proposals.

Language: Blaise The Blaise [16] system provides a domain-specific graphical language

for expressing both models and MCMC algorithms. Hence, such a system provides a more

expressive language for encoding inference algorithms beyond choosing from a preselected

and fixed number of strategies. As we mentioned in the introduction, the Kernel IL used by

AugurV2 is closely related to the Blaise language. In particular, it should be possible to trans-

late the Kernel IL instantiated with the Density IL to a Blaise graph. We use the Kernel IL

for the purposes of compilation, whereas in Blaise the language is interpreted. It would be an

interesting direction of future work to see if the subset of the Blaise language related to infer-

ence can also be used for the purposes of compilation.

Flexible inference Edward [112] and Venture [68] also explore increasing the expres-

sivity of different query and inference languages. Edward is built on top of Tensor-flow [1],

and hence, provides gradient-based inference strategies such as HMC and AVDI. Notably, the
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Tensor-flow system efficiently supports the computation of gradients for an input computa-

tional graph (e.g., the computational graph of the log-likelihood calculation for a probabilistic

model). Consequently, Edward leverages the benefits of Tensor-flow. It would be interesting

direction for future work to see how much of Tensor-flow’s infrastructure for AD can be used

in AugurV2 as done in Edward. However, note that AugurV2 provides higher-level function-

ality than Tensor-flow. For example, AugurV2 can generate non-gradient-based MCMC algo-

rithms (e.g., Gibbs samplers) as well as compose gradient-based MCMC with non-gradient-

based MCMC. Venture [68] provides an inference language that is closer to a general-purpose

programming language, and hence, explores the more expressive regime of the design space for

inference algorithms.

Other modeling languages The probabilistic programming languages we have focused

on so far have largely been functional. Hence, they are most suited for expressing models with

directed dependencies as opposed to undirected dependencies (e.g., with cycles). In this sec-

tion, we review other language designs that are not as closely related to AugurV2 as the ones

we presented previously, but nevertheless, are included here to more broadly survey the land-

scape of probabilistic modeling languages.

For instance, probabilistic logic programming adds probabilistic operations to a logic pro-

gramming language. Intuitively, the idea is to replace hard, logical entailments with soft,

probabilistic entailments. Hence, this approach attempts to combine logic with probability

theory.

Markov Logic Networks (MLNs) provide another logic-programming approach that com-

bines first-order logic with Markov Random Fields [26]. The user provides a collection of

first-order formula, their weights, and a set of ground terms (i.e., atoms). This results in
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a possible-world semantics, where intuitively, the probability of a possible world is propor-

tional to the weighted number of first-order formula it violates. Thus, MLNs do not describe

generative processes, which exhibit casual dependency structures, but relational dependency

structures. A MLN can answer questions of the form: “what is the probability that a for-

mula holds, given another formula holds?” Hence, MLNs subsume basic probabilistic infer-

ence where we obtain a posterior distribution on numerical parameters given numerical data.

As a result, MLNs are typically solved with optimization techniques to obtain point esti-

mates, rather than Bayesian techniques that return distributions. Tractable Markov Logic

(TML) is a variation of MLN that restricts the structure of first-order formulae in order to

make inference more tractable [27]. This is reminiscent of the restricted language design we

saw in AugurV2 to make inference more tractable in practice as well. There are other lan-

guages that attempt to combine logic with probability such as Stochastic Logic Programs [74],

BLOG [70, 71] and Problog [25], but we refer the reader to work on MLN for a more compre-

hensive discussion.

Tabular [43], as its name suggests, explores how to use schemas (e.g., databases or spread-

sheets at a first approximation) to express probabilistic models queries. It falls at an interest-

ing point in the design space because most modeling languages use traditional programming

language syntax. A schema naturally expresses missing values in an observed data set. In-

deed, a common problem encountered in probabilistic modeling in practice is how to treat

incomplete data sets. There are also domain-specific PPLs such as Picture [61], which pro-

vides a modeling language for describing how a scene is rendered and the task of inference

corresponds to solving computer vision tasks.
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Implementation techniques In addition to exploring various points of the (model, query,

inference) tuple space, many PPLs have also proposed interesting implementation decisions

that are related to AugurV2’s. For example, the Hierarchical Bayes Compiler (HBC) [24] ex-

plores the compilation of Gibbs samplers to C code. In this work and our previous work on

Augur, we support compilation of Gibbs samplers to the GPU. Swift [120] uses a compiler

pass to optimize how conditional independence relationships are tracked at runtime for a

modeling language that can express dynamic relationships. In contrast, AugurV2 provides a

simpler modeling language that expresses static relationships, and hence, statically approxi-

mates these relationships. Unlike the compilation approaches above, Kiselyov et al. [56] ex-

plore how to implement Bayesian inference (including variable elimination for exact inference

and importance sampling for approximate inference) for a language with discrete distributions

called Hansei that is shallowly-embedded in OCaml. Bhat et al. [13] give a proof of correct-

ness for a compiler that transforms a term in a first-order modeling language into a density.

This language subsumes AugurV2’s (e.g., AugurV2 does not provide branching constructs)

and can be seen as justifying the implementation of the AugurV2 frontend, which translates

a term in the modeling language into its density factorization. Le et al. [63] propose imple-

menting inference for probabilistic programs using ideas from amortized inference. They use

a neural network to learn a variational approximation of the posterior distribution. Once this

approximation is learned, further queries on the posterior distribution can be answered di-

rectly (via Sequential Monte Carlo) (hence, amortized inference).

Related language designs We would like to briefly mention some other work outside of

the probabilistic programming literature that the design of AugurV2 draws from. For exam-

ple, Halide is a DSL for expressing image processing algorithms that separates the specifica-

171



tion of the intrinsic image processing algorithm from the schedule, i.e., the storage and order

of execution [93]. Similarly, AugurV2 is a DSL for expressing parametric Bayesian networks

that separates the specification of the model from the MCMC schedule.
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7
The AugurV2 Language

In this chapter, we formalize AugurV2’s modeling language and show how the semantic foun-

dation based on computable distributions developed in the first part of the dissertation can

guide the design and implementation of a PPL. For the purposes of giving semantics, we first

define an expression-based language called Core AugurV2 that we can desugar programs in

AugurV2’s surface-level modeling language into (Sections 7.1 and 7.2). Then, we show that

every Core AugurV2 program of full-measure denotes a distribution that admits a density fac-

torization (Section 7.3). Importantly, this justifies the implementation of inference in Core

173



AugurV2 via MCMC (a method which requires densities). Finally, we show that conditioning

on a well-formed distribution (i.e., a full measure distribution) in Core AugurV2 is (Type-2)

computable (Section 7.4). In particular, an error such as an out-of-bounds access can produce

a sub-probability distribution. Hence, the semantics of conditioning on these distributions is

undefined.

7.1 A Core Language

In this section, we define a language called Core AugurV2 that AugurV2’s surface-level mod-

eling language can be desugared into. The syntax for Core AugurV2 is summarized in Fig-

ure 7.1. Unlike the random variable notation used in AugurV2’s modeling language, Core

AugurV2 is an expression-based language that incorporates distributions using a probability

monad. It will be easier to see how the semantics of this language can be given by compilation

to λCD (Chapter 4) because the languages are structurally similar. The desugaring translation

is straightforward, and hence, omitted. Figure 7.2 provides an example of how a GMM (see

Figure 5.3 for the GMM expressed in random variable notation) is desugared.

Syntax We use an expression-based language with a probability monad to describe the gen-

erative model. In particular, we can use three syntactic constructs to build complex distribu-

tions from primitive distributions dist. First, the syntax x ← e1 ; ; e2 is like an ordinary bind

from the probability monad that additionally returns the value bound to x. Hence, we call it

a product bind expression. Second, the syntax x = e1 ; ; e2 corresponds to a standard let ex-

pression. Third, the syntax {e | x ← gen}D is a n-fold product bind expression, which can

be used to express models with repetitive structure. The semantics of a product bind expres-

sion are independent of the order of evaluation. Nevertheless, note that this does not imply
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model ::= λ−→x . eh >>= (λ(y1, . . . , ym). obs eo)
τ ::= Int | Real | Real|pt | τ × τ | Vec τ | −→τ → τ | Dist τ

e ::= x | i | r | opn(e1, . . . , en) | e[e] | dist(−→e )
| x← e ; ; e | x = e ; ; e | {e | x← gen}D

gen ::= g until g

g ::= x | i | g[g]

Figure 7.1: The syntax for Core AugurV2, an expression-based language with a probability monad Dist τ .

\(D, K, N, mu0, Sigma0, pis, Sigma).
(mu <- { MvNorm(mu0, Sigma0) | k <- 0 until K } ;;
{ Disc(pis) | n <- 0 until N }

) >>= (\(mu, z). { MvNorm(mu[z[n]], sigma) | n <- 0 until N })

Figure 7.2: A Core AugurV2 model encoding a GMM (see Figure 5.3 for the the GMM expressed in ran-
dom variable notation).

that the distributions specified with this construct are necessarily independent. For exam-

ple, the random variables corresponding to the data points for a GMM in Figure 7.2 are ex-

pressed with a product bind expression, but are only conditionally independent of each other

given the appropriate random variables (and not independent of each other). Comprehension

bounds gen are specified with a restricted subset of expressions g, which includes (1) variables

x, (2) constant integers i, and (3) vector projections g[g] (which can be used to encode ragged

arrays). A complete Core AugurV2 model is a function λ−→x . eh >>= (λ(y1, . . . , ym). obs eo) from

model hyperparameters and constants −→x to an expression eh >>= (λ(y1, . . . , ym). obs eo) de-

scribing the hidden (eh) and observed (eo) parts of a generative model.

Types Base types include integers Int, reals Real, and reals restricted to a discrete point

Real|pt. The reason we have different types for reals Real and restricted reals Real|pt is to
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specify the base distribution that a Core AugurV2 model has density with respect to. Infor-

mally, we have the subtyping relation Int ≤ Real and Real|pt ≤ Real. Compound types

include products τ1 × τ2 and vectors Vec τ . Primitive functions are assigned function types

−→τ → τ . Finally, distributions are assigned the type Dist τ .

Statics Figure 7.3 summarizes Core AugurV2’s type system. The judgement ⊢D τ checks

that distribution types are well-formed. The expression typing judgement Γ ⊢ e : τ checks

expressions. Finally, the judgement Ψ ⊢ model checks that a whole model is well-formed,

under a context Ψ that contains the types of primitive distributions and functions. We walk

through each of the judgements in turn.

The judgement ⊢D τ is used to restrict the types that can be supplied to a distribution

type. For instance, AugurV2 allows distributions on base types Int, Real, and Real|pt, as well

as products τ1 × τ2 and Vec τ of well-formed distribution types. These correspond to familiar

distributions on integers and reals, and (n-fold) products of these distributions.

The judgement Γ ⊢ e : τ types expressions and is mostly standard. We review the typing

rules for expressions that work with distributions. To type the expression x ← e1 ; ; e2, or a

product bind expression, we check that e1 is a distribution Dist τ1. Then, we check that e2 is

a distribution Dist τ2 under the additional assumption that x has type τ1. Additionally, we

check that τ1 and τ2 are well-formed distribution types. The result is the product distribution

type Dist τ1 × τ2. To type the distribution comprehension expression {e | x ← gen}D, we

check that the body e under the assumption that x is an integer has the distribution type

Dist τ and that gen is a well-formed generator. This produces a distribution on the vector

space Dist (Vec τ).

The typing rule for the let sampling expression x = e1 ; ; e2 is similar to that of the rule
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⊢D τ Well-formed distribution type

⊢D Int ⊢D Real ⊢D Real|pt

⊢D τ1 ⊢D τ2

⊢D τ1 × τ2

⊢D τ

⊢D Vec τ

Γ ⊢ g : τ Generator expression judgement

Γ(x) : τ

Γ ⊢ x : τ Γ ⊢ i : Int
Γ ⊢ g1 : Vec τ Γ ⊢ g2 : Int

Γ ⊢ g1[g2] : τ

Γ ⊢ gen : τ Generator judgement

Γ ⊢ g1 : Int Γ ⊢ g2 : Int
Γ ⊢ g1 until g2 : Vec Int

Γ ⊢ e : τ Expression judgement

Γ(x) : τ

Γ ⊢ x : τ Γ ⊢ i : Int Γ ⊢ r : Real

Γ(f) = τ1 × · · · × τn → τ Γ ⊢ ei : τi for 1 ≤ i ≤ n

Γ ⊢ opn(e1, . . . , en) : τ

Γ ⊢ e1 : Vec τ Γ ⊢ e2 : Int
Γ ⊢ e1[e2] : τ

Γ ⊢ e1 : Dist τ1 Γ, x : τ1 ⊢ e2 : Dist τ2 ⊢D τ1 ⊢D τ2

Γ ⊢ x← e1 ; ; e2 : Dist (τ1 × τ2)

Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : Dist τ2 ⊢D τ1 ⊢D τ2

Γ ⊢ x = e1 ; ; e2 : Dist (r(τ1)× τ2)

Γ, x : Int ⊢ e : Dist τ Γ ⊢ gen : Vec Int ⊢D τ

Γ ⊢ {e | x← gen}D : Dist (Vec τ)

Ψ ⊢ model Model judgement

Ψ, x1 : τ1, . . . , xn : τn ⊢ eh : Dist (τ1h × . . .× τmh )

Ψ, x1 : τ1, . . . , xn : τn, y1 : τ
1
h , . . . , ym : τmh ⊢ eo : Dist τo

Ψ ⊢ λ(x1, . . . , xn). eh >>= (λ(y1, . . . , ym). obs eo) : τo → Dist (τ1h × . . .× τmh )

Figure 7.3: Core AugurV2’s type system.
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r(Int) ≜ Int
r(Real|pt) ≜ Real|pt

r(Real) ≜ Real|pt

r(τ1 × τ2) ≜ r(τ1)× r(τ2)

r(Vec τ) ≜ Vec (r(τ))

Figure 7.4: The definition of the restriction function r, a function on Core AugurV2 types, which is used
in the Core AugurV2 type system to indicate the base measure a distribution has density with respect to.

for the product sample, with two differences. First, we check that e1 has type τ1 (instead of

Dist τ1). Second, the resulting type is Dist r(τ1) × τ2 and not Dist τ1 × τ2. This uses the

restriction function r, which operates on types and is defined by induction on well-formed dis-

tribution types. The restriction function is summarized in Figure 7.4. The idea is that when

we let bind the expression e1 to a variable x, we should consider the degenerate product space

where the first component is restricted to the one-point space, instead of the entire space of

values of type τ1. This distinction will be used later when we give the density factorization of

AugurV2 models.

The judgement for a well-formed model Ψ ⊢ model checks that model is well-formed under

the context Ψ. The context Ψ contains types for primitive functions, distributions, and densi-

ties. A Core AugurV2 model is a generative model eh >>= (λ(y1, . . . , ym). obs eo) whose hidden

portion is given by eh and observed portion is given by eo. The expression is typed similarly

to a product bind expression. However, the resulting type is a function from observed data τo

to a posterior distribution Dist τh.
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module Vec (Vec, idx, unt, sequenceA) where
import CompDistLib

type Vec a = [a]

idx :: Vec a -> Integer -> a
idx vec n | n < length vec = v !! n

| otherwise = bot

unt :: Integer -> Integer -> Vec Integer
unt n m | 0 <= n && n < m = { i | i <- n..m }

| otherwise = bot

sequenceA :: Vec (Samp a) -> Samp (Vec a)
sequenceA (hd : tl) = hd >>= \hd' >>= sequenceA tl >>=

\tl' >>= return (hd' : tl')
sequenceA [] = return []

Figure 7.5: Vector module for translation.

7.2 Semantics

In this section, we translate a Core AugurV2 expression into a λCD expression and then de-

rive the semantics. This supports the idea that a Turing-complete probabilistic modeling

language expresses computable distributions—in particular, we show now how to use one

(i.e., λCD) to implement an interpreter for AugurV2.

7.2.1 Translation

Figure 7.6 summarizes the translation T J·K of a well-typed Core AugurV2 expression into a

λCD expression. In order to translate the vector type, we assume that λCD has lists and their

associated operations with the usual semantics (see Figure 7.5). We focus on the translation

for distribution constructs as the translations for the other constructs are largely standard.
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T Je1 until e2K ≜ unt (T Je1K) (T Je2K)
T JxK ≜ x

T JiK ≜ i

T JrK ≜ r

T Jopn(e1, . . . , en)K ≜ opn(T Je1K, . . . , T JenK)
T Je1[e2]K ≜ idx (T Je1K) (T Je2K)

T Jdist(e1, . . . , en)K ≜ dist(T Je1K, . . . , T JenK)
T Jx← e1 ; ; e2K ≜ x← T Je1K ;

y ← T Je2K ; where y not free in T Je2K
return (x, y)

T Jx = e1 ; ; e2K ≜ x← return T Je1K ;
y ← T Je2K ; where y not free in T Je2K
return (x, y)

T J{e | x← gen}DK ≜ sequenceA {T JeK | x← T JgenK}
T Jeh >>= (λ(y1, . . . , ym). obs eo)K ≜ obsDens T JehK (λ(y1, . . . , ym).

getBndCondDens(T JeoK)(y1, . . . , ym))

Figure 7.6: Translation of AugurV2 into λCD.
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The translation of a product sampling expression x ← e1 ; ; e2 uses bind from λCD. Its

translation is

T Jx← e1 ; ; e2K ≜ x← T Je1K ; (y ← T Je2K ; return (x, y)) ,

where y is not free in T Je2K. The translation of the assignment expression x = e1 ; ; e2 also

uses bind from λCD.

T Jx = e1 ; ; e2K ≜ x← return (T Je1K) ; (y ← T Je2K ; return (x, y)) ,

where y is not free in T Je2K. To translate an expression producing a distribution on an n-fold

product (i.e., a vector), we use lists (see Figure 7.5). We will treat lists isomorphically with

n-fold products.

T J{e | x← gen}DK ≜ sequenceA {T JeK | x← T JgenK}
The λCD function sequenceA is a monadic sequence operator, i.e., it binds a list of monadic

values, and returns the list (see Figure 7.5). We have also taken the liberty of using compre-

hension syntax.

Finally, the translation of an observation construct simply calls the implementation of com-

putable conditioning with a bounded, computable density obsDens from λCD. As a reminder,

the function getBndCondDens obtains the conditional density of its argument which is a distri-
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bution.

T Jeh >>= (λ(y1, . . . , ym). obs eo)K ≜
obsDens T JehK (λ(y1, . . . , ym). getBndCondDens(T JeoK)(y1, . . . , ym))

7.2.2 Derived semantics

Together, the translation T J·K and the semantics of λCD gives a derived semantics for AugurV2

models. Below, we compute the derived semantics for Core AugurV2’s distribution constructs

and check that they are what we expect.

First, we calculate the semantics of a product sampling expression x← e1 ; ; e2.

EJT Jx← e1 ; ; e2KKρ(U)

= EJx← T Je1K ; (y ← T Je2K ; return (x, y))Kρ(U)

=

∫
x̄ 7→ EJy ← T Je2K ; return (x, y)Kρ[x 7→ x̄] dEJe1Kρ

=

∫
x̄ 7→

∫
ȳ 7→ 1U ((x̄, ȳ)) dEJe2Kρ[x 7→ x̄] dEJe1Kρ

Hence, we obtain a product distribution.
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Second, we calculate the semantics of a let sampling expression x = e1 ; ; e2.

EJT Jx = e1 ; ; e2KKρ(U)

= EJx← return T Je1K ; (y ← T Je2K ; return (x, y))Kρ(U)

=

∫
x̄ 7→ EJy ← e2 ; return (x, y)Kρ[x 7→ x̄] dEJreturn e1Kρ

=

∫
x̄ 7→

∫
vy 7→ 1U ((x̄, ȳ)) dEJe2Kρ[x 7→ x̄] dEJreturn e1Kρ

=

∫
ȳ 7→ 1U ((x̄, ȳ)) dEJe2Kρ[x 7→ x̄] where x̄ = EJe1Kρ

Again, we obtain a product distribution. The last equality follows from the property of an

indicator function under an integral and justifies the intuitive substitution semantics.

Third, we can check that the distribution comprehension {e | x ← gen}D results in an

n-fold product distribution.

EJT J{e | x← gen}DKKρ(U)

= EJsequenceA {T JeK | x← T JgenK}Kρ(U)

=

∫
x̄1 7→ . . .

∫
x̄n 7→ 1U ((x̄1, . . . , x̄n)) dEJeKρ[x 7→ ḡn] . . . dEJeKρ[x 7→ ḡ1] ,

where (ḡ1, . . . , ḡn) = EJT JgenKKρ. Note that sequenceA forces evaluation of the list compre-

hension, so a diverging generator expression results in the bottom valuation. Moreover, note

that each EJeKρ[x 7→ ḡi] is independent of each other for each 1 ≤ i ≤ n, and thus, we refer to

the n-fold product distribution as also a parallel comprehension.
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Finally, we can check the semantics of observation.

EJT Jeh >>= (λ(y1, . . . , ym). obs eo)KKρ ≜ obsDens T JehK (λ(y1, . . . , ym). getBndCondDens(T JeoK)(y1, . . . , ym))

= ȳ 7→ B 7→
∫
B
fȳ dµ∫

VJτoK fȳ dµ ,

where µ ≜ EJΓ ⊢ eh : Dist τhKρ and fȳ ≜ getBndCondDens(T Je0K). That is, fȳ satisfies

∫
B

fȳ dν = ν(B)

for any measurable B and ȳ ∈ VJτoK, where ν ≜ EJΓ, y : τh ⊢ eo : Dist τoKρ[y 7→ ȳ]. As

expected, the semantics is a function from observed data to the posterior distribution.

7.3 Density Factorization

The derived, distributional semantics enables us to reason about Core AugurV2 models. Nev-

ertheless, for the purposes of implementing MCMC algorithms to sample from the model’s

posterior distribution, we will need the model’s (potentially unnormalized) density. Hence,

in this section, we characterize the distributions that Core AugurV2 models denote as those

admitting a density factorization.

To begin, we need to indicate what base measure a Core AugurV2 model has density with
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respect to. Towards this end, we define a collection of base measures by induction on types.

BJIntK ≜ {νcounting}

BJRealK ≜ {νLebesgue}

BJReal|ptK ≜ ∪
r∈R

1{r}

BJτ1 × τ2K ≜ {ν1 ⊗ ν2 | ν1 ∈ BJτ1K ∧ ν2 ∈ BJτ2K}
The base measures for types Int and Real are the counting measure and Lebesgue measure

respectively. The base measure for a real restricted to a point Real|pt is a family of point

measures (1{r})r∈R indexed by reals. The base measure for a product type τ1 × τ2 is the com-

pletion of the product measure of the base measures for τ1 and τ2. We include the completion

so that the base measure for Real× Real is the Lebesgue measure on R× R.1

Now that we have the base measure for a Core AugurV2 program of type Dist τ , we can

show that the denotation has a density with respect to the base measure. Towards this end,

we will need to strengthen the interpretation of distribution types of Core AugurV2 programs

to those that admit a density with respect to the appropriate base measure.

VJDist τK ≜ {µ | µ ∈ C (VJτK, [0, 1]<) ∧ ∃f, ν ∈ BJτK. µ = fdν} .

Then, the density factorization result is a consequence of type-soundness for AugurV2 pro-

grams.

Lemma 7.3.1 (Type-soundness). If Γ ⊢ e : τ , then EJeK : C (VJΓK,VJτK)
1This is a (minor) technicality that affects the version of Fubini-Tonelli we can use.
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Proof. The proof follows by induction on the typing derivation, where in each case that works

with distributions, we can explicitly witness what the density is. It is instructive to work

through the distribution cases to see what the density is.

Case 6 (Γ ⊢ x ← e1 ; ; e2 : Dist τ1 × τ2). We need to witness a density for EJx ← e1 ; ; e2Kρ
for ρ ∈ VJΓK. By the induction hypothesis, EJe1K : C (VJΓK,VJDist τ1K) and EJe2K : C (VJΓ, x :

τ1K,VJDist τ2K). Let f be the density and ν1 be the base measure corresponding to EJe1Kρ.

Moreover, let κ ≜ curry(EJe2K)(ρ) ∈ C (VJτ1K,VJDist τ2K). κ is a probability kernel, and

moreover, there is gx̄ and ν2 ∈ BJτ2K such that κ(x̄) = gx̄. We claim

x̄, ȳ 7→ f(x̄)gx̄(ȳ)

is a density with respect to ν1 ⊗ ν2 ∈ BJτ1 × τ2K, which follows by calculation.

∫
(x̄, ȳ 7→ 1U (x̄, ȳ)f(x̄)gx̄(ȳ)) d(ν1 ⊗ ν2)

=

∫ (
x̄ 7→

∫
(ȳ 7→ 1U (x̄, ȳ)) gx̄(ȳ) dν2

)
f(x̄)dν1

=

∫ (∫
(1U (x̄, ȳ)) dEJe2Kρ[x 7→ x̄]

)
dEJe1Kρ

Case 7 (Γ ⊢ x = e1 ; ; e2 : Dist r(τ1)× τ2). We need to witness a density for EJx = e1 ; ; e2Kρ
for ρ ∈ VJΓK. By the induction hypothesis, EJe1K : C (VJΓK,VJτ1K) and EJe2K : C (VJΓ, x :

τ1K,VJDist τ2K). Let x̃ ≜ EJe1Kρ and µ ≜ curry(EJe2K)(ρ)(x̃) ∈ VJDist τ2K. Thus, there is

density gx̃ and base measure ν2 ∈ BJτ2K such that gx̃ dν2 = µ. We claim

x̄, ȳ 7→ gx̃
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is a density with respect to 1{x̃} ⊗ ν2, which follows by calculation.

∫
(x̄, ȳ 7→ 1U (x̄, ȳ)gx̃(ȳ)) d(1{x̃} ⊗ ν2)

=

∫ (
x̄ 7→

∫
(ȳ 7→ 1U (x̄, ȳ)) gx̃(ȳ) dν2

)
d1{x̃}

=

∫
(ȳ 7→ 1U ((x̃, ȳ))) dEJe2Kρ[x 7→ x̃]

7.4 On Modeling Language Design

We just saw an application of the semantics from the first part of the dissertation by giving

semantics to Core AugurV2 by translation and characterizing the models as those that admit

a density factorization. In this section, we offer a few additional remarks on how a semantics

based on computable distribution can be used to aid the design of a probabilistic modeling

language.

Error values Note that a well-typed AugurV2 program can denote an ill-formed distribu-

tion, e.g., a distribution for which it is nonsensical to condition on. For instance, we can de-

fine a model where the variance argument to a Normal distribution is negative. AugurV2 han-

dles this partiality by using the diverging value ⊥ to represent an error value and considering

distributions on spaces that take ⊥ into account. For example, supplying a negative variance

to a Normal distribution produces ⊥ ∈ VJDist RealK.
The constructs that can potentially introduce an error value ⊥ in AugurV2 include ap-

plication of primitive functions ropn(e1, . . . , en), instantiating a parameterized distribution
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dist(e1, . . . , en), and vector indexing e[e]. We could make all these operations total, in which

case every well-typed AugurV2 program would denote a distribution that is meaningful to

condition on. For example, we could give vector indexing e1[e2] the semantics where we use

the index e2 modulo the length of e1 (see Borgström et al. [17]). Nevertheless, modifying the

underlying semantics to get rid of error values is somewhat unsatisfying. Instead, by compil-

ing to a suitably expressive language such as λCD with the appropriate semantics, we can get

the desired semantics.

Conditioning The computable semantics from the first part of the dissertation also enables

us to show that when an AugurV2 program does not denote an error value, then conditioning

is computable.

Proposition 7.4.1. When AugurV2 denotes a full-measure distribution, then conditioning is

Type-2 computable.

This easily follows as we have restricted our conditioning primitive to a Type-2 computable

setting when we have a bounded conditional density. Indeed, a conditioning expression is sim-

ply translated to a call to the appropriate function implemented in the module CondLib (see

Section 4.7.2 where we implement conditioning as a library).

If expressions This section was inspired by discussions with Oleg Kiselyov. AugurV2 does

not provide if expressions. In order to branch on a probabilistic expression, users must in-

stead encode it with a Bernoulli random variable. For instance, one possible encoding on real-

valued expressions e2 and e3 and condition x (drawn from a distribution e1) is

if0 x then e2 else e3 = x ∗ e2 + (1− x) ∗ e3 .
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This kind of encoding is done in practice to encode branching expressions in graphical models.

The marginal distributions induced will be the same for both encodings. To see this, we can

calculate out the semantics as we have done before. Let µ = EJΓ ⊢ e1 : Dist NatKρ. On the

left, we have

U 7→
∫ x̄ 7→


EJΓ ⊢ e2 : Dist RealKρ[x 7→ x̄](U) when x̄ = 1

EJΓ ⊢ e3 : Dist RealKρ[x 7→ x̄](U) when x̄ = 0

 dµ .

On the right, we have

U 7→
∫

x̄ 7→ (x̄ EJΓ ⊢ e2 : Dist RealKρ[x 7→ x̄](U))+

((1− x̄) EJΓ ⊢ e3 : Dist RealKρ[x 7→ x̄](U)) dµ .

These are equivalent.

However, there are conceptually two different methods we can use to implement a MCMC

sampler for these distributions. To see this, it is helpful to look at what is going on from

the perspective of density factorization. For the distribution denoted by e2, we will write

p2(y1, . . . , yk, yk+1, . . . yn) for its density. Similarly for the distribution denoted by e3, we

will write p3(y1, . . . , yk, yk+1, . . . ym) for its density. Note that the prefix y1, . . . , yk is shared

between p2 and p3 so that yk+1, . . . yn has been marginalized out for p2 and yk+1, . . . ym has

been marginalized out for p3. Then, on the left, we have

p1(x̄)


p2(y1, . . . , yk, yk+1, . . . yn) when x̄ = 1

p3(y1, . . . , yk, yk+1, . . . ym) when x̄ = 0

.
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One the right, we have

x̄ p1(x̄) p2(y1, . . . , yk, yk+1, . . . yn) + (1− x̄) p1(x̄) p3(y1, . . . , yk, yk+1, . . . ym) .

The density on the left is reminiscent of model selection. Depending on the condition, we ei-

ther have model with density p2 or a model with density p3. These models can be handled

with reversible-jump MCMC [44] which is designed for the case when each model has a dif-

ferent number of dimensions. In our example, we have explicitly written out the marginalized

variables for p2 and p3 to indicate that each model may make a different number of choices. A

reversible-jump MCMC has a more involved acceptance ratio calculation as well as the need

to compute Jacobians (to ensure reversibility). In contrast, the density on the right considers

both branches simultaneously, and hence, can be treated with ordinary MH methods. Note

that this works because the model has been unfolded so that both branches are considered.

Otherwise, we would need a reversible-jump correction.

Our digression on if expressions illustrates two additional points about the design and

implementation of probabilistic modeling languages. First, it is important that we have a

semantics for probabilistic programs independent of another (equivalent) semantics useful

for reasoning about inference algorithms. Indeed, our digression on if expressions, which

AugurV2 intentionally leaves out, illustrates this point. The distributional semantics is ag-

nostic to marginalization whereas the density factorization highlights the different algorithmic

choices at our disposal.2 In fact, the subtle difference between if and its encoding has been

the root of buggy MCMC implementations in probabilistic programming languages (e.g. see

2Gated graphical models [72] have been developed to add branching capabilities to graphical mod-
els, which subsequently impacts the inference algorithm.
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Probabilistic Matlab [117] and Hakaru [77]). Second, we can expose algorithmic choices on the

inference in the language itself. For instance, if we added if expressions to AugurV2, we can

use that as a user hint to the compiler to generate reversible-jump MCMC algorithms instead

of a more generic MCMC algorithm. This highlights the added dimension of considering which

language features a probabilistic modeling language should provide, beyond just the standard

programming language features.
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8
Conclusion

In this dissertation, I investigated programming languages designed for probabilistic modeling.

I began by exploring how to use computable distributions to give semantics to high-level pro-

gramming languages designed for probabilistic modeling. The intuitive reason for why com-

putable distributions provide a good foundation for the semantics of probabilistic programs is

summarized by the following motto (repeated here): “Turing-complete probabilistic program-

ming languages express computable distributions.” The idea that computable distributions go

hand in hand with probabilistic programs has been hinted at in the literature, although the
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connection to the best of my knowledge has not been made precise at the level of a high-level

probabilistic programming language until my work.

The second part of the dissertation focused on how to architect a PPL compiler. Towards

this end, I considered the setting of fixed-structure, parametric models instead of general-

purpose PPLs. Even in this restricted but practically useful setting, the design and implemen-

tation of compilers for PPLs is still a largely unexplored space. As a step towards advancing

the construction of compilers for PPLs, I devised a sequence of ILs that enable a compiler to

gradually transform a declarative specification of a model and a query into an executable in-

ference algorithm as well as layout the phases of compilation.

8.1 Future Work

In this section, I suggest a few directions for future work on both the semantics and imple-

mentation of PPLs.

Semantics The most pressing issue is to see if we can indeed embed the semantics based on

topological domains into a realizability topos that I informally discussed in Section 4.8. This

would enable us to rigorously make the connection to realizability. There is a third semantics

that can possibly be given to λCD based on L-domains [40]. This approach encodes the notion

of Type-2 computability using the order-theoretic notion of approximation instead of Type-2

Turing machines. Indeed, this may be the more natural way to extend a CPO model of PCF

with reals and distributions instead of the way I have done it, which relies externally on oracle

Turing machines.

Another direction to take the semantics of probabilistic programs based on computable dis-

tributions is to address the issues of full abstraction and universality. The hope would be to
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obtain similar results as in Plotkin’s paper [92]: “LCF Considered as a Programming Lan-

guage.” As a model for how to extend the standard techniques to a PCF-like language ex-

tended with Type-2 computable elements, a good starting point is Longley’s thesis [66]. As

a first attempt, I think it is better to approach the problem of full abstraction and universal-

ity by adding language constructs, i.e., parallel if (pif) and exists (∃) respectively, instead of

attempting to change the semantics. For example, as we saw in the Haskell implementation

of λCD, we needed to use Haskell’s imprecise exceptions mechanism to simulate ∃ so that we

could implement a (Type-2) computable function that would not have been implementable

otherwise. This is akin to adding ∃ to the language. Intuitively, I expect there to be a cor-

responding full abstraction and universality result to hold for a probabilistic language with a

uniform distribution plus the standard constructs. Longely obtains full abstraction and uni-

versality results for PCF extended with parallel if and exists using realizability toposes.

One of the original motivations I had for basing the foundations of probabilistic program-

ming on computable distributions was to create a probabilistic Chomsky hierarchy. The idea

was to create a hierarchy of distributions which had different computational requirements

with the hope that this would translate into corresponding sub-languages with guaranteed ef-

ficient inference. At first glance, this approach appears to be doomed because it does not take

much expressive power to encode 3SAT (e.g., ∧, ∨, and coin flips) and ask an automated in-

ference engine to solve it. Here, we can take a cue from the non-computability of conditioning—

conditioning in the presence of bounded, computable noise is computable. From this perspec-

tive, it may be meaningful to attack the problem of designing sub-languages with guaranteed

efficient inference by considering the kind of noise added.
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Implementation It would be interesting to add language features to the AugurV2 model-

ing language and see how robust the current architecture of the AugurV2 compiler is to these

additions. As a first step, adding non-parametric prior distributions to AugurV2 as primi-

tives would likely require adding (1) additional compiler analysis to reason about properties of

those distributions and (2) runtime library support to implement the functionality. This in-

creases the complexity of the compiler, but does not change its architecture. As a second step,

adding a Markovian looping construct (i.e., one where the current loop iteration depends only

on the previous loop iteration) would enable us to express time-series and state-space models

in AugurV2 . We would need to extend (1) the Density IL to contain a sequential structure

product, (2) the decomposition analysis to support this additional case, and (3) the imple-

mentation of AD. Importantly, the backend remains largely unchanged—the only parts of the

compiler that are affected are those that work on the Density IL. Nevertheless, this additional

sequential looping construct suggests that we should also extend the compiler with additional

inference techniques such as particle MCMC [4] that are designed specifically to handle such

conditional independence structures. Thus, we would also likely want to extend the Kernel IL.

This suggests that for each new language feature we add that requires extending the Density

IL, we should also extend the Kernel IL.

Third, it would be interesting to see what other ILs are useful for compiling inference and

what other inference techniques can be automated with them. In AugurV2, I focused on MCMC

inference algorithms, but there are others such as variational inference and possibly combina-

tions of the two. Fourth, what other architectures could be used to accelerate inference? For

example, Tensor-flow [1] would be an interesting target of compilation. Fifth and a related

point, it would be interesting to examine heterogenous computation. Currently, AugurV2
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generates either all CPU code or GPU code, but there may be situations where the memory

transfer is worth the cost.

8.2 Final Thoughts

I conclude with some thoughts on probabilistic programming. On the aspect of semantics, I

think that computable distributions are a good foundation for interpreting probabilistic pro-

grams. In fact, I intended the motto “Turing-complete probabilistic modeling languages ex-

press computable distributions” to be a rephrasing of the Church-Turing thesis itself: “Turing-

complete programming languages express computable functions.” The choice to use com-

putable distributions goes against the prevailing wisdom for giving semantics to probabilistic

programs using measure theory. Hence, I provide two reasons below why I choose computable

distributions instead.

First, a purely measure-theoretic semantics loses its connection to the operational behavior

of programs, unless one bakes in primitives that deal with reals and distributions in a black

box manner. In particular, there is a mismatch between a semantics that deals only with ideal

quantities and an implementation in a general-purpose language that deals only with approx-

imations (e.g., with floating point). Instead, it seems much more fruitful to deal with com-

putability directly, i.e., embrace that we can only compute approximately with continuous

values. Moreover, such a (Type-2) computability theory exists.

Second, what does it mean for a PPL to be Turing-complete if we interpret probabilistic

programs in purely measure-theoretic terms? The obvious answer is that such a PPL can

simulate a Turing machine. However, it seems that such a language would have more com-

putational power than an ordinary Turing machine if it can compute directly on reals and
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Figure 8.1: A cartoon of the design space of PPLs.

measures without approximation. In this case, we would violate the Church-Turing thesis.

Alternatively, we can delimit the bounds of computation to what a Turing machine can com-

pute, which places us in the realm of Type-2 computability. Indeed, the formulation of a com-

putable distribution as a computable function that generates samples from bit-streams makes

the connection back to probabilistic Turing machines, which is well known to be equivalent to

Turing machines equipped with an oracle.

Figure 8.1 provides a cartoon view of where I think the design and implementation of prac-

tical probabilistic programming languages should head. I have included both non-computable

models (i.e., all models) and also importantly, practically-useful models. AugurV2 captures

a subset of the practically-useful models. My hope was to design a programming language

that would capture only the models with (known) efficient inference because inference (and

not language expressivity) will be the bottleneck of probabilistic programming language’s use-

fulness in practice. Hence, rather than focus on developing efficient inference algorithms for

general-purpose languages, I believe we should focus instead on restricted language designs
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and improving inference in those settings.

To draw an analogy, consider a similar technology such as SMT/SAT solving. Like infer-

ence, SAT solving is intractable in general. Nevertheless, in practice, one can solve SAT prob-

lems and extend this capability to particular special cases of interest (e.g., bit-vectors) via

clever design of SMT solvers. In the context of probabilistic programming, the crafting of par-

ticular theories corresponds to designing restricted languages that handle particular classes of

models efficiently. For probabilistic programming to be as practical as SMT solving is today,

I think we will likely need significant advances in inference techniques to push PPL technol-

ogy further. Black box variational inference [60] seems like a promising alternative, but these

techniques are still in their infancy.
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A
Environment Lookup for CPO Semantics

This appendix contains the auxiliary argument that environment lookup is continuous, which

is used in the CPO semantics (see Section 4.4). The intuition for why this result holds is be-

cause a variable x can be realized on a Turing machine as: “Turing machine code that looks

at the tape indexed by x”. Consequently, environment lookup is computable, and hence, con-

tinuous. The actual argument is quite tedious and is included mostly for those interested to

see how the CPO semantics leverages computability. Indeed, the argument would not work if

λCD was not designed with Type-2 computability in mind because then not all values would
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be realizable on a Turing machine. Hence, the notion of Type-2 computability is crucial to the

CPO semantics, even if it is not readily apparent at first.

The argument proceeds in several stages. First, we introduce a language that parameterizes

a PCF-like language with constants denoting points in computable metric spaces and contin-

uous operations on them called λR. λCD is an instantiation of λR. Second, we give λR both

operational and denotational semantics. Third, we show soundness and adequacy to relate the

two semantics. Fourth and crucially, we realize the operational semantics on an oracle Turing

machine. Fifth and finally, we show the desired result that environment lookup is continuous.

A.1 A Language with Represented Spaces

The language λR extends a PCF-like language with constants denoting points in computable

metric spaces and continuous operations on them. The syntax is given below.

τ ::= Nat | τ → τ | τ × τ | α | β

e ::= x | n | nop e | λx. e | e e | if0 e then e else e | µx. e

| (e, e) | fst e | snd e

| cα | cβ | ropn(−→e )

The types α and β are base types that will be interpreted as computable metric spaces. For

simplicity, we restrict our attention to two base represented spaces (e.g., reals and distribu-

tions), but in general, we can have any number. The other types are standard. The first line

of the expression syntax gives standard PCF-like expressions. The second line of the expres-

sion syntax adds pairs.
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⊢R τ Representable type

⊢R α ⊢R β

⊢R τ1 ⊢R τ2

⊢R τ1 × τ2

⊢R τ1 ⊢R τ2

⊢R τ1 → τ2

Γ ⊢ e : τ Expression typing

Γ(x) = τ

Γ ⊢ x : τ Γ ⊢ n : Nat
Γ ⊢ e : Nat

Γ ⊢ nop e : Nat
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

Γ ⊢ e1 : Nat Γ ⊢ e2 Γ ⊢ e3 : τ

Γ ⊢ n : if0 e1 then e2 else e3 : τ

Γ, x : τ ⊢ e : τ

Γ ⊢ µx. e : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τ1 × τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1 × τ2

Γ ⊢ snd e : τ2

Γ ⊢ cα : α Γ ⊢ cβ : β

Ψ(ropn) = τ1 × · · · × τn → τ ⊢R Ψ(ropn) Γ ⊢ ei : τi for 1 ≤ i ≤ n

Γ ⊢ ropn(e1, . . . , en) : τ

Figure A.1: Type-system

The third line of the expression syntax adds constants cα and cβ , which denote elements

of the respective computable metric spaces. Let (X, dX , SX) and (Y, dY , SY ) be the com-

putable metric spaces that constants cα and cβ denote elements of respectively. Concretely,

constants cα and cβ are given by fast Cauchy names with representations δX and δY respec-

tively. Hence, we can treat cα and cα as bit-streams. The syntax ropn(−→e ) is a primitive ap-

plication of a continuous map between computable metric spaces denoted by ropn to the argu-

ments (e1, . . . , en).

Figure A.1 summarizes the type system for λR. The type system is parameterized by a

201



global environment Ψ that contains the types of primitive functions. The typing judgement

Γ ⊢ e : τ is mostly standard, so we will focus on the rules for constructs that operate on com-

putable metric spaces. As expected, constant elements of a computable metric space are as-

signed the appropriate base type. The rule for a primitive function application ropn(e1, . . . , en)

checks that the function looked up from a global environment Ψ has a representable type

(i.e., derivable by ⊢R) and that each of the arguments ei has the appropriate type.1

A.2 Denotational Semantics

The denotational semantics of λR is mostly straightforward—we simply have to interpret ad-

ditional constants and primitive functions.

A.2.1 Interpretation of Types

The interpretation of types VJ·K is given by induction on types, where types are interpreted as

CPOs. We use a call-by-name interpretation.

VJNatK ≜ Disc(N)⊥

VJτ1 × τ2K ≜ (VJτ1K× VJτ2K)⊥
VJτ1 → τ2K ≜ (VJτ1K⇒ VJτ2K)⊥

VJαK ≜ S(L(X, dX , SX))

VJβK ≜ S(L(X, dY , SY ))

1Although we require the base types to be computable metric spaces, arguments to primitive func-
tions can come from more general represented spaces.

202



EJxKρ ≜ ρ(x)

EJnKρ ≜ Υ(n)

EJnop eKρ ≜ Υ(nop)(EJeKρ)
EJλx. eKρ ≜ ⌊v 7→ EJeKρ[x 7→ v]⌋
EJe1 e2Kρ ≜ unlift(EJe1Kρ)(EJe2Kρ)

EJif0 e1 then e2 else e3Kρ ≜


EJe2Kρ if EJe1Kρ = 0̄

EJe3Kρ if EJe1Kρ = n̄ for n̄ ̸= 0̄

⊥ otherwise
EJµx. eKρ ≜ fix(v 7→ EJeKρ[x 7→ v])

EJ(e1, e2)Kρ ≜ ⌊(EJe1Kρ, EJe2Kρ)⌋
EJfst eKρ ≜ π1(unlift(EJeKρ))
EJsnd eKρ ≜ π2(unlift(EJeKρ))
EJcαKρ ≜ Υ(cα)

EJcβKρ ≜ Υ(cβ)

EJropn(e1, . . . , en)Kρ ≜ Υ(ropn)(EJe1Kρ, . . . , EJenKρ)
Figure A.2: The denotational semantics of λR

The interpretation of PCF-like types is standard. Recall that S applies the specialization or-

der and L lifts a topological space to contain ⊥. As computable metric spaces are Hausdorff,

both VJαK and VJβK give lifted, flat CPOs.

A.2.2 Expression Denotation

Figure A.2 summarizes the denotational semantics of λR. The expression denotation function

EJΓ ⊢ e : τK : VJΓK ⇒ VJτK is defined by induction on expression typing judgements, but we

will omit the judgement for brevity. It is parameterized by a well-formed global environment

Υ that interprets constants and primitive functions.
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A global environment is well-formed when:

1. For any constant cα, Υ(cα) = δX(cα) when cα ∈ dom(δX) and glob(cα) = ⊥ otherwise.

2. For any constant cβ , Υ(cβ) = δY (c
β) when cβ ∈ dom(δY ) and glob(cβ) = ⊥ otherwise.

3. For any primitive function ropn, Υ(ropn) is a strongly-continuous realizer of ropn (see [116]).
By strongly continuous, we mean that rop diverges if any of its inputs diverges (e.g.,
when input bit-streams are not names of elements in the appropriate represented spaces).
This is also known as a strict continuous function.

The meanings of PCF-like expressions are standard. The denotation of a constant cα (cβ)

is a global environment lookup Υ(cα) (Υ(cβ)). Concretely, the lookup converts the (fast Cauchy)

name into its corresponding element. When cα (cβ) is not a (fast Cauchy) name, it denotes

⊥.2 We interpret a primitive function application ropn(e1, . . . , en) as a strict function applica-

tion, which applies the semantic function Υ(ropn).

Before continuing, we check that the expression denotation function is well-defined.

Lemma A.2.1 (Denotation well-defined). If Γ ⊢ e : τ , then EJeK : VJΓK⇒ VJτK.
Proof. We proceed by induction on the typing derivation and note that the standard proof

works for the PCF-like fragment of λR (e.g., see Gunter [45]).

Case 8 (Γ ⊢ cα : α). We have EJcαK = const(Υ(cα)), where const is continuous. The case

Γ ⊢ cβ : α is similar.

Case 9 (Γ ⊢ ropn(e1, . . . , en) : τ). We need to show apply ◦⟨Υ(ropn), EJe1K, . . . , EJenK⟩ :

VJΓK ⇒ VJτK. By assumption, Υ(ropn) is a continuous map between represented spaces, so it

is also a CPO continuous function (because its topology is coarser than the Scott topology).

By our induction hypothesis, we have that EJΓ ⊢ ei : τiK : VJΓK ⇒ VJτiK. The result then

follows because the denotation uses only continuous functions.

2Unlike standard PCF, the denotation of a value of “base types” α or β may result in ⊥. Hence,
referring to α and β as base types is somewhat of a misnomer.
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A.3 Operational Semantics

In this section, we give λR operational semantics. The values that λR expression evaluate to

are given below.

v ::= n | λx. e | (e, e) | cα | cβ

An expression can evaluate to an element of a computable metric space in addition to the

standard values. The value (e, e) indicates that evaluation of pairs is lazy.

Figure A.3 summarizes the large-step, call-by-name operational semantics of λR. It is pa-

rameterized by a global environment Υ that interprets primitive function symbols ropn. The

operational semantics of the PCF-like expressions are standard and will not be discussed fur-

ther. We describe the semantics of the additional constructs λR.

A constant (i.e., bit-stream encoding a fast Cauchy sequence) is already a value, and thus,

reduces to itself. The reduction of ropn(e1, . . . , en) reduces each ei to a corresponding value

vi for 1 ≤ i ≤ n, and then applies the semantic version of the primitive function obtained by

looking up the symbol ropn in the global environment to the resulting arguments. Note that

the operational semantics does not substitute the values vi into the body of Υ(ropn). Instead,

the meaning of Υ(ropn) is given externally by an oracle Turing machine realizing the function.

By design of λCD and the well-formedness of Υ, such an oracle Turing machine exists.
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e ⇓ v Large-step call-by-name evaluation

n ⇓ n

e ⇓ n

nop e ⇓ Υ(nop)(n) λx. e ⇓ λx. e

e1 ⇓ λx. e e[e2/x] ⇓ v

e1 e2 ⇓ v

e1 ⇓ 0 e2 ⇓ v

if0 e1 then e2 else e3 ⇓ v

e1 ⇓ n n ̸= 0 e3 ⇓ v

if0 e1 then e2 else e3 ⇓ v

e[µx. e/x] ⇓ v

µx. e ⇓ v

(e1, e2) ⇓ (e1, e2)

e ⇓ (e1, e2) e1 ⇓ v1

Γ ⊢ fst e : v1

e ⇓ (e1, e2) e2 ⇓ v2

Γ ⊢ snd e : v2 cα ⇓ cα

cβ ⇓ cβ
ei ⇓ vi for 1 ≤ i ≤ n

ropn(e1, . . . , en) ⇓ (Υ(ropn))(v1, . . . , vn)

Figure A.3: The operational semantics for λR.

A.4 Soundness and Adequacy

Now, we connect the operational semantics with the denotational semantics via soundness and

adequacy. All statements are made under the additional hypothesis that the global environ-

ment Υ is well-formed. We first state a substitution lemma for λR.

Lemma A.4.1 (Substitution). If Γ, x : τx ⊢ e : τ and · ⊢ ex : τx, then EJΓ, x : τx ⊢ e : τKρ =

EJΓ ⊢ e[ex/x] : τKρ for any well-formed environment ρ (with respect to Γ).

Proof. By induction on the structure of e. As λR does not introduce any additional binding

constructs, the standard proof works.

We will use the notation σe to indicate the substitution of multiple expressions where σ =

[e1/x1, . . . , en/xn].

Soundness is straightforward to show.
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Lemma A.4.2 (Soundness). Let Γ ⊢ e : τ . If σe ⇓ v, then EJeKρ = EJvKρ for any substitution

σ and environment ρ that are well-formed with respect to Γ.

Proof. By induction on the height of the derivation of e ⇓ v. The standard proof works for the

original constructs. The constant cases hold trivially.

Case 10 (ropn(e1, . . . , en) ⇓ (Υ(ropn))(v1, . . . , vn)). We have to show EJropn(e1, . . . , en)Kρ =

EJropn(v1, . . . , vn)Kρ, which holds iff Υ(ropn)(EJe1Kρ, . . . , EJenKρ) = Υ(ropn)(v1, . . . , vn). By

the induction hypothesis, EJeiKρ = EJviK for 1 ≤ i ≤ n. Hence, the result holds.

Following a standard technique (e.g., see Gunter [45]), we use a logical relation d ≲τ e

that relates CPO elements d to closed terms of e to show adequacy. It is defined mutually

recursively with another relation on values d ≲τ v.

Definition A.4.1. Let d ≲τ e if:

• EJ· ⊢ e : τK = ⊥ or

• there exists some v such that e ⇓ v and EJ· ⊢ e : τK ≲τ v.

Let d ≲τ v if:

• n̄ ≲Nat n where n̄ is the semantic value associated with the syntax n,

• f ≲τ1→τ2 x 7→ e if for any d ≲τ1 v, f(d) ≲τ2 e[v/x],

• (d1, d2) ≲τ1×τ2 (e1, e2) if d1 ≲τ1 e1 and d2 ≲τ2 e2,

• δX(cα) ≲α cα, or

• δY (c
β) ≲β cβ .
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The relation ≲τ on values for PCF types is standard. For the computable metric space

type α, we have δX(cα) ≲α cα, so a constant cα is related to the name of the element δX(cα).

Note that an element can have multiple names. The relation δY (c
α) ≲α cα is defined similarly.

The following (standard) strengthened lemma implies adequacy.

Lemma A.4.3. Let Γ = x1 : τ1, . . . , xn : τn. If Γ ⊢ e : τ and for 1 ≤ i ≤ n, vi ∈ VJτiK and

vi ≲τi ei for well-typed closed ei, then

EJeK ≲τ e[v1/x1, . . . , vn/xn] .

where ρ = [x1 7→ v1, . . . , xn 7→ vn] is a well-formed environment and σ = [v1/x1, . . . , vn/xn] is

a well formed substitution.

Proof. We proceed by induction on the structure of e. As before, the cases for the standard

constructs go through without modification.

Case 11 (cα). We need to show EJcαKρ ≲α σcα, which holds iff Υ(cα) ≲α cα. There are two

cases. If cα ∈ dom(δX), then we have Υ(cα) = δX(cα) ≲α cα by well-formedness of Υ. If

cα /∈ dom(δX), then Υ(cα) ≲α cα because Υ(cα) = ⊥. The case for cβ is similar.

Case 12 (ropn(e1, . . . , en)). We need to show Υ(ropn)(EJe1Kρ, . . . , EJenKρ) ≲τ Υ(ropn)(v1, . . . , vn),

where ei ⇓ vi for 1 ≤ i ≤ n. By our inductive hypothesis, we have that EJe1Kρ ≲τi vi for

1 ≤ i ≤ n. At representable types, EJe1Kρ ≲τi vi when vi and EJeiKρ name the same ele-

ment of a computable metric space. As our global environment Υ is well-formed, Υ(ropn) is a

strongly-continuous realizer, so the output must name the same element as well (or diverge if

any of its inputs diverge).
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As usual, we obtain adequacy as a corollary.

Corollary A.4.4. (Adequacy) Let · ⊢ e : τ . If expD· ⊢ e : τ ̸= ⊥, then there is a v such that

e ⇓ v.

A.5 Oracle Turing Machines

Now, we show that the operational semantics can be realized by an oracle Turing machine.

First, we will encode λR expressions on a Turing machine tape. Second, we describe an or-

acle Turing machine which takes an encoding of an expression on its input tape and writes

the resulting value to its output tape. As a warning, the exercise is tedious. Nevertheless, the

crucial point is that this is possible only because λR (and consequently λCD) is designed with

Type-2 computability in mind—we will not be able to realize measures on measurable spaces

on an oracle Turing machine.

A.5.1 Preliminaries

Before we begin, we establish some notation and recall some standard facts about Turing ma-

chines.

The notation ⟨ x1, . . . , xn ⟩ is a standard tupling function from computability theory which

can be used to pair streams of characters from an alphabet together (e.g., by dovetailing).

The notation bin : N→ {0, 1}∗ converts a natural into its binary encoding.

Recall that we can treat a single working tape as an unbounded number of working tapes,

again by dovetailing. Thus, a Turing machine can always create a new working tape if needed.

When we say that a Turing machine does an operation “on-demand”, we mean that a Tur-

ing machine does the appropriate dovetailing to ensure that tape contents are computed lazily.
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Moreover, recall that we can run a Turing machine for a certain number of steps, inspect the

results, and continue.

A.5.2 Encoding

The encoding function encode(·) translates an expression into a stream of characters on a Tur-

ing machine tape encoding the expression. The Turing machine alphabet ∆ consists of enough

characters to encode the syntax of λR. We reify the primitive functions nopi and ropnj by in-

dexing them with naturals i and j (in its binary encoding). That is, nop ::= nop1 | nop2 | . . .

and rop ::= ropn1
1 | ropn2

2 | . . . .

∆ ::= 0 | 1

| Nat | Var | nopi | If0 | Lam | App | Mu

| Pair | Fst | Snd

| Repα | Repβ | ropnj

Figure A.4 gives the encoding function, which is in essence an identity function. Note that

the tupling function ⟨ · ⟩ is needed because the translation of cα and cβ give infinite bit-

streams. Also, we assume that the expressions have been converted to DeBruijn indices before

the encoding.

A.5.3 Interpreter

Once an expression has been encoded on the tape, note that we can perform DeBruijn index

shifting (lshift to decrement the indices and rshift to increment the indices) of a syntactically
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encode(x) ≜ Var⟨ bin(x) ⟩
encode(n) ≜ Nat⟨ bin(n) ⟩

encode(nopi e) ≜ nopi⟨ encode(e) ⟩
encode(if0 e1 then e2 else e3) ≜ If0⟨ encode(e1), encode(e2), encode(e3) ⟩

encode(λe) ≜ Lam⟨ encode(e) ⟩
encode(e1 e2) ≜ App⟨ encode(e1), encode(e2) ⟩

encode(µe) ≜ Mu⟨ encode(e) ⟩
encode((e1, e2)) ≜ Pair⟨ encode(e1), encode(e2) ⟩
encode(fst e) ≜ Fst⟨ encode(e) ⟩
encode(snd e) ≜ Snd⟨ encode(e) ⟩

encode(cα) ≜ Repα⟨ cα ⟩
encode(cβ) ≜ Repβ⟨ cβ ⟩

encode(ropnj (e1, . . . , en)) ≜ ropnj ⟨ encode(e1), . . . , encode(en) ⟩

Figure A.4: The encoding function that translates an expression into its oracle Turing machine representa-
tion.
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well-formed expression eagerly because expressions have finite height. That is, we can recur-

sively descend into each subexpression and eagerly perform the appropriate shifting.

The function extend⟨ t1, t2, x ⟩ is realized by a machine where mentions of the variable x

in expression whose encoding is on tape t1 is treated as “look at the contents of t2.” That is,

instead of substituting x away for t2 (which may be infinite), replace x in t1 with Turing ma-

chine code that looks at the contents of t2.

Now, we describe an oracle Turing machine that realizes the reduction of an expression e.

The machine has an oracle tape, an auxiliary working tape which can be treated as a count-

able number of working tapes, an input tape, and a (one way) output tape. We start with

encode(e) on the input tape.

The machine is constructed in the obvious way. We just need to ensure that all operations

are done in an on-demand fashion as we work with infinite bit-streams. Here, the choice of

call-by-name evaluation corresponds nicely with tape contents being computed on-demand.

• interp(Var⟨ x ⟩): copy the machine code x and (on-demand) copy its result to the out-
put tape.

• interp(Nat⟨ n ⟩): copy Nat⟨ n ⟩ to the output tape.

• interp(⊕n⟨ t ⟩): run a Turing machine realizing nopni with input tape set to the output
of running interp(t).

• interp(If0⟨ t1, t2, t3 ⟩): run interp(t1) redirecting the result to a temporary working
tape. If that tape contains Nat⟨ 0̄ ⟩, run interp(t2). Otherwise, run interp(t3).

• interp(Lam⟨ t ⟩): (on-demand) copy Lam⟨ t ⟩ to the output tape.

• interp(App⟨ t1, t2 ⟩): the goal is to produce lshift⟨ subst⟨ t′1, rshift⟨ t2 ⟩, 0 ⟩ ⟩, where
interp(t1) = Lam⟨ t′1 ⟩. Run interp(t1) until we match the tag Lam, where the rest of
the tape is ⟨ t′1 ⟩. Then, run rshift⟨ t2 ⟩ which can be done in finite time to produce t′2.
Next, run the environment extension code extend⟨ t′1, t′2, 0 ⟩. Before we read from the
output tape, run lshift.

• interp(Mu⟨ t ⟩): the goal is to produce lshift⟨ subst⟨ t, rshift⟨ Mu⟨ t ⟩ ⟩, 0 ⟩ ⟩. This can be
done similarly to the application case.
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• interp(Pair⟨ t1, t2 ⟩): (on-demand) copy Pair⟨ t1, t2 ⟩ to the output tape.

• interp(Fst⟨ t ⟩): run interp(t) until we match the tag Pair. If we match the tag, run
interp(t) further to obtain ⟨ t1, · ⟩ and (on-demand) copy t1 to the output tape.

• interp(Snd⟨ t ⟩): run interp(t) until we match the tag Pair. If we match the tag, run
interp(t) further to obtain ⟨ ·, t2 ⟩ and (on-demand) copy t2 to the output tape.

• interp(Repα⟨ cα ⟩): (on-demand) copy Repα⟨ cα ⟩ to the output tape.

• interp(Repβ⟨ cβ ⟩): (on-demand) copy Repβ⟨ cβ ⟩ to the output tape.

• interp(ropnj ⟨ t1, . . . , tn ⟩): get the Turing machine code for ropnj (note that the name of
ropnj contains an oracle). By convention, suppose ropnj has n-input tapes. Set the input
tapes to point to each ti. Finally, run the Turing machine code for ropnj , redirecting its
output to the output tape.

The operational semantics is realizable by an oracle Turing machine.

Lemma A.5.1 (Realizable by oracle Turing machine). If e ⇓ v, then interp(encode(e)) =

encode(v).

Proof. The proof is by induction on the height of the derivation of e ⇓ v. The cases are

straightforward because every step is essentially an identity.

A.6 Environment Lookup is Continuous

We can finally show that environment lookup is continuous.

Theorem A.6.1 (Environment lookup continuous). Let Γ, x : αx ⊢ e : α. Then, v 7→ EJΓ, x :

αx ⊢ e : αKρ[x 7→ v] ∈ C (VJαxK,VJαK) (on its domain) for any well-formed environment ρ with

respect to Γ.

Proof. It is sufficient to consider when EJΓ, x : αx ⊢ e : αKρ[x 7→ v] ̸= ⊥ for some v as we only

need to show the result on the domain.
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Let σ be the corresponding substitution to the environment ρ. By the substitution lemma,

EJΓ ⊢ e : αKρ[x 7→ v] = EJ· ⊢ (σe)[v/x] : αK. By adequacy (corollary A.4.4), there is a value v′

such that (σe)[v/x] ⇓ v′. Because the operational semantics is realizable by an oracle Turing

machine ( Lemma A.5.1), we have that interp(encode((σe)[v/x])) = encode(v′). Thus, we have

a realizer where the variable x is treated as an environment lookup from a Turing machine

tape. Hence, the machine with encode(v) on the environment tape indexed by x realizes v 7→

EJΓ, x : αx ⊢ e : αKρ[x 7→ v].

A.7 Relation to λCD

λCD as an instantiation of λR. To see this, let α = Real and β be the (countable) collec-

tion of types generated by well-formed types {Samp τ | ⊢D τ}. The primitive functions on

reals correspond with the primitive functions on represented spaces in λR. Given a collec-

tion of unary functions (retτ )⊢Dτ with type τ → Samp τ indexed by well-formed types τ , the

expression return e corresponds to the λR expression retτ (e), i.e., the application of a func-

tion between represented spaces. Given a collection of binary functions (sampleτ1,τ2)⊢Dτ1,τ2

with type Samp τ1 × τ1 → Samp τ2, the expression x ← e1 ; e2 corresponds to the λR ex-

pression sample(e1, λx. e2). Note that the second argument λx. e2 has the form of the sub-

stitution function that we showed was continuous as a map between represented spaces (see

lemma A.6.1).
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B
AugurV2 Supplementary

B.1 Model: HLR

Figure B.1 contains an AugurV2 program encoding a HLR. As a reminder, each xnk (for any

0 ≤ n < N) is called a predictor (or feature or attribute). A HLR can be used to construct

a classifier, e.g., by determining the posterior distribution on the vector of coefficients theta

given class labels y.
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(K : Int, N : Int, sigma2 : Real, x : Vec (Vec Int)) => {
param b ∼ Normal(0.0, sigma2) ;
param theta[k] ∼ Normal(0.0, sigma2)

for k <- 0 until K ;
data y[n] ∼ Bernoulli(sigmoid(theta .* x[n] + b))

for n <- 0 until N ;
}

Figure B.1: A HLR model in AugurV2.

Data sets We use two data sets from the UCI machine learning repository [64]. The Ger-

man Credit data set has 24 predictors and 1000 data points. The Adult Income data set has

14 predictors and 48842 data points. We preprocess each data set as follows before feeding it

to each system. Discrete predictors are treated numerically, i.e., encoded as a number. Then,

we standardize all predictors so that they have mean 0 and variance 1 [50]. We ignore the

data points in a data set with missing predictor values.

Additional Experiments Figure B.2 summarizes the results of the additional experi-

ments, including (1) time series and (2) k-lag autocorrelation plots. These plots give a visual

diagnostic of the performance of the MCMC inference algorithm that each system generates.

To create the plots, we generate 10000 samples from each chain with a burn-in of 1000 sam-

ples to estimate each chain’s mean and variance. Then, we run a separate chain generating

10000 samples, also with a burn-in of 1000 samples, to estimate the k-lag autocorrelation.

ρ̂k =
1

σ̂2(S − k)

S−1∑
s=1

(θs − µ̂)(θs+k − µ̂)

As we can see from the time series plots (Figures B.2a and B.2c) for one the predictors (the

other predictors look similar), the Markov chains produced by all three systems seem to have
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(a) Time series plot (for θ0) on German credit data
set.
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(b) Autocorrelation plot (for θ0) on German credit
data set.
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(c) Time series plot (for θ0) on Adult Income data
set.
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(d) Autocorrelation plot (for θ0) on Adult Income
data set.

Figure B.2: Additional experimental results for the HLR model.

reached their stationary distribution. Moreover, the spread of the sampled values produced by

all three systems also look similar, which increases our confidence that each system implemen-

tation of HLR is correct, i.e., targeting the correct posterior distribution.

The empirical autocorrelation function (Figures B.2b and B.2d) provides a visual diagnos-

tic of the performance of a MCMC inference algorithm. Theoretically, the autocorrelation

function (of a reversible Markov Chain) should be a convex, decreasing function [18]. Intu-
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itively, at higher lags between states, there should be less correlation between them. On the

German Credit data set, the empirical autocorrelation function exhibited by AugurV2 has a

theoretically expected shape. Jags and Stan produce much noisier shapes. On the Adult In-

come data set, all three systems exhibit noisier autocorrelation shapes.

We attempted to estimate the effective sample size (ESS), but we found most of the au-

tocorrelation functions to be too noisy to provide a meaningful estimate. Hoffman et al. [50]

provide a method for estimating the ESS of a HLR. However, the method is invalid due to its

treatment of negative autocorrelation.1 We also tried other methods such as the initial con-

vex sequence (ICS) estimator [18] and initial positive sequence (IPS) estimator [18] that deal

with negative autocorrelation for reversible Markov chains. However, a visual diagnostic of the

autocorrelation shows that the empirical estimates are too noisy. Consequently, we have just

provided time series and autocorrelation plots as a visual diagnostic of each system’s station-

arity and mixing properties.

B.2 HGMM

Figure B.3 contains an AugurV2 program encoding a HGMM. Compared to the GMM model

that we have used as a running example throughout this dissertation, the HGMM has priors

on the mixture proportions, the cluster means, and the cluster covariance matrices. Conse-

quently, it is a hierarchical version of the GMM model.

Data sets We use synthetic data sets with a varying number of mixtures and observed

points for our HGMM experiments to assess how well each system’s inference efficiency scales

1See Radford Neal’s blog post https://radfordneal.wordpress.com/2012/01/27/
evaluation-of-nuts-more-comments-on-the-paper-by-hoffman-and-gelman/).
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(K : Int, N : Int, mu0 : Vec Real, sigma0 : Mat Real,
df : Int, scale0 : Mat Real, alpha : Vec Real) => {

param pii ∼ Dirichlet(alpha) ;
param mu[k] ∼ MvNormal(mu0, sigma0)

for k <- 0 until K ;
param sigma[k] ∼ IWishart(df, scale0)

for k <- 0 until K ;
param z[n] ∼ Categorical(pii)

for n <- 0 until N ;
data y[n] ∼ MvNormal(mu[z[n]], sigma[z[n]])

for n <- 0 until N ;
}

Figure B.3: A HGMM model in AugurV2.

with the size of the data and model. We estimate the predictive probability on a held-out test

set as a function of wall-clock time.2

Additional Experiments To compute the predictive probability, we first use each sys-

tem to draw S samples sπ, sµk, and sσk (for 1 ≤ s ≤ S). Then, we estimate the predictive

probability of M held-out data points ỹm as:

M∏
m=1

S∑
s=1

K∑
k=1

p(ỹm |s µk,
s σ2

k)p(k;
s π) .

Figure B.4 provides plots of the log-predictive probability for the first 150 samples with

no thinning as a function of wall-clock time for each system and for different settings. Note

that Stan requires an initial tuning period of 50 samples that we discard for the purposes of

computing the log predictive-probability. Hence, this repeats the same experiment as in Fig-

2The predictive probability can be measured as a function of MCMC steps. For example, a MCMC
sampler on a 2D space that samples each dimension in sequence takes two steps to generate one sam-
ple. Hence, this metric more directly measures the algorithm’s statistical efficiency because (1) the
time to draw a sample is removed and (2) it penalizes unblocked proposals.
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ure 6.12, but for different synthetic data sets and hyperparameter settings. As a reminder, a

log-predictive probability plot can be seen as a proxy for learning—as training time increases,

the algorithm should be able to make better predictions. The compile time has been excluded

(see Figure B.5).

As we vary the data sets and hyperparameter settings, we see that the log-predictive prob-

abilities for each system converges to roughly the same point. This gives us confidence that

each system’s automatically generated MCMC algorithm is sampling from the appropriate

distribution. The primary difference is the speed at which each system converges to a stable

log-predictive probability.

Figure B.5 summarizes the compile and data transfer times for each system. AugurV2’s

CPU compile times are faster than AugurV2’s GPU compile times due to the speed of Clang

versus Nvcc. Stan has the slowest compile times due to its extensive use of C++ templates.

Across the different data sets, AugurV2’s compile and data transfer times scale with the amount

of data. We believe that this scaling is due solely to the data transfer because the AugurV2

compiler is invoked on the same model, which we treat symbolically. Jags’ compile and data

transfer times also scale with the amount of data, albeit more dramatically than AugurV2’s.

We believe that this is due to Jags’ strategy of reifying the Bayesian network at compile-

time. Stan’s compile and data transfer times are significantly longer than AugurV2’s or Jags’

and is dominated by the compile time. Moreover, Stan’s compile time varies significantly be-

tween models. As a reminder, it takes Stan roughly 35 seconds to compile the HLR model, or

roughly 7 seconds shorter than the amount it takes to compile the HGMM.

220



0 20 40 60 80 100 120 140 160
Sample

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Lo
g
-p

re
d
ic

ti
v
e
 P

ro
b
a
b
ili

ty

1e4

AugurV2-cpu-gibbs
AugurV2-gpu-gibbs
AugurV2-cpu-eslice
AugurV2-gpu-eslice
Jags
Stan

(a) (K = 3, D = 2, N = 10000)
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(b) (K = 3, D = 10, N = 10000)
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(c) (K = 10, D = 10, N = 10000)
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Figure B.4: Plots of the log predictive-probability with respect to (wall-clock) time for each system and
for different settings. We use each system to draw 150 samples with no thinning. Note that Stan requires
an initial tuning period of 50 samples that we discard for the purposes of computing the log predictive-
probability.
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System Compile
AugurV2-cpu-gibbs 0.57
AugurV2-gpu-gibbs 8.269
AugurV2-cpu-eslice 0.651
AugurV2-gpu-eslice 8.914
Jags 0.131
Stan 42.454

(a) (K = 3, D = 2, N = 1000)

System Compile
AugurV2-cpu-gibbs 0.607
AugurV2-gpu-gibbs 8.575
AugurV2-cpu-eslice 0.621
AugurV2-gpu-eslice 10.998
Jags 1.724
Stan 42.71

(b) (K = 3, D = 2, N = 10000).
System Compile
AugurV2-cpu-gibbs 0.668
AugurV2-gpu-gibbs 8.622
AugurV2-cpu-eslice 0.672
AugurV2-gpu-eslice 10.951
Jags 1.877
Stan 42.635

(c) (K = 3, D = 10, N = 10000)

System Compile
AugurV2-cpu-gibbs 0.777
AugurV2-gpu-gibbs 9.313
AugurV2-cpu-eslice 0.781
AugurV2-gpu-eslice 11.308
Jags 3.464
Stan 42.609

(d) (K = 10, D = 10, N = 10000)
System Compile
AugurV2-cpu-gibbs 0.613
AugurV2-gpu-gibbs 8.687
AugurV2-cpu-eslice 0.612
AugurV2-gpu-eslice 10.987
Jags 3.329
Stan 42.542

(e) (K = 10, D = 2, N = 10000)

Figure B.5: Table of the compile times (including data transfer) for each system for the same experiment
shown in Figure B.4. AugurV2’s CPU compile times are faster than AugurV2’s GPU compile times due
to the speed of Clang versus Nvcc. Stan has the slowest compile times due to its extensive use of C++
templates.
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B.3 Model: LDA

Figure B.6 summarizes the Latent Dirichlet Allocation model (LDA) and gives the corre-

sponding AugurV2 program. LDA can be used to learn the topics in a corpus of documents.

As a reminder, each ϕk gives the proportion of words in each topic and each θd gives the pro-

portion of topics in each document. The variable zdw gives the topic assignment of each word

wdj in a document.

Data sets We used two data sets from the UCI repository for our LDA experiments. The

first is the KOS data set, which contains approximately 3.4K documents, 470K words, and

6.9K vocabulary words. The second is the NIPS data set, which contains approximately 1.5K

documents, 1.9M words, and 12.4K vocabulary words. The data sets come preprocessed with

common stop words removed.

Additional Experiments We measure the statistical efficiency of each system by comput-

ing the log-predictive probability of a held-out test data set.3 For clarity, we now summarize

operationally how we compute the log-predictive probability, and refer the reader to the refer-

ences above for their derivations.

1. Let w⃗ be the (entire) corpus of words. We split this into two disjoint sets, a training set
w⃗train and a testing set w⃗test. We use a 90/10 split.

2. We split the words in each document in the testing set into an observed set w⃗test
obs and a

held-out set w⃗test
ho . We ensure that the held-out words and the observed words in each

3There are many other metrics that have been proposed to evaluate both the LDA model and a
corresponding inference algorithm (e.g., see [49]). We choose this one because it rewards the algo-
rithm which learns the best set of parameters for prediction no matter how it is computed. Hence, an
oracle that knows the best setting of parameters for prediction for the given training and testing set
will do the best. As we are keeping the model fixed and vary the inference algorithm, this should be a
proxy for measuring how well an inference algorithm is performing.
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(D : Int, K : Int, N : Int,
alpha : Vec Real, beta : Vec Real) => {

param theta[d] ∼ Dirichlet(alpha)
for d <- 0 until D ;

param phi[k] ∼ Dirichlet(beta)
for k <- 0 until K ;

param z[d, j] ∼ Categorical(theta[d])
for d <- 0 until D, j <- 0 until N[d] ;

data w[d, j] ∼ Categorical(phi[z[d, w]])
for d <- 0 until D, j <- 0 until N[d] ;

}

Figure B.6: The LDA model in AugurV2.

document are disjoint (for that document). We use a 90/10 split.

3. We run an inference algorithm to infer the distribution of words over topics using the
training set w⃗train, i.e., we target p(ϕ, θ, z | w⃗train) to infer a value ϕ̂.

4. We run an inference algorithm to infer the topic assignments using the observed testing
set w⃗test

obs , i.e., we target p(θ, z | ϕ̂, w⃗test
obs ) to infer ẑ.

5. The predictive probability of the held-out testing set is computed as:∑
s

∏
d

∏
j

∑
k

p(ϕk)p(θ
s
d)p(zdj = k | θsd)p(wtest

ho,dj | ϕk)

Figure B.7 shows the log-predictive probability of AugurV2’s CPU and GPU inference al-

gorithms as a function of wall-clock time. This contains the corresponding log-predictive prob-

abilities for the speedups reported in Figure 6.14. The CPU and GPU algorithms converge

to roughly the same log-predictive probability, which indicates that the AugurV2 compiler is

parallelizing the sampling algorithm correctly.
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Figure B.7: The log-predictive probability of AugurV2’s CPU vs. GPU inference on LDA as a function
of wall-clock time. The samplers are stopped after we obtain 200 samples. We do not include time for
compilation, which is reported separately.
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