
Formalizing the SAFECode Type System

Daniel Huang and Greg Morrisett

Harvard University, Cambridge MA 02138, USA,
dehuang@fas.harvard.edu,
greg@eecs.harvard.edu

Abstract. The Secure Virtual Architecture (SVA) provides an object-
level integrity policy, similar to type-safety, for languages such as C and
C++, and thus rules out a wide range of common vulnerabilities. SVA
uses an enhanced version of the Low-Level Virtual Machine (LLVM)
compiler called SAFECode to enforce the policy through a combination
of static and dynamic type-checks. However, this results in a relatively
large trusted computing base (TCB). SVA reduces the TCB with an
unverified type-checker that relies upon a paper-and-pencil proof of type-
soundness for a core-language. As a further step towards increasing the
assurance of the compiler, we present a mechanized proof of soundness
and a verified type-checker for a realistic subset of the SAFECode type
system developed using the Coq Proof Assistant.

Keywords: verification, SAFECode, LLVM, memory safety

1 Introduction

Most of our computing infrastructure is coded using low-level languages such as
C/C++. Unsurprisingly, it is easy to make simple mistakes in these languages
that lead to well-known vulnerabilities. In principle, recoding the infrastructure
in a type-safe language would eliminate many of these vulnerabilities, but the
costs of doing so seem to outweigh the benefits.

An attractive alternative is to bring the benefits of type-safety to legacy code
by combining static analyses and run-time checks to automatically enforce a
type-safety policy. There are many challenges in doing this effectively, as static
analyses are generally too weak to reason effectively about real C/C++ pro-
grams, resulting in many false positives. The cost of inserting run-time checks
and maintaining the meta-data needed to support those checks can also be pro-
hibitively expensive. Recently, a number of systems have successfully combined
the benefits of static analysis, dynamic checks, program optimization, and clever
run-time representations to produce viable solutions [3, 10, 11, 5, 4].

One such system, SAFECode [5], uses sophisticated analyses and optimiza-
tions to eliminate run-time checks. However, this adds the SAFECode compiler
to the trusted computing base (TCB). We could try to prove that the analy-
ses and transformations (and subsequent optimizations) are correct as in the
CompCert project [8]. Perhaps more easily, we can build a verified checker that

2

Type τ ::= int | char | unknown | τ ∗ ρ | handle(ρ, τ)
Statements S ::= ε | S; S | x = E | store E, E | storeToU x, E, E

| storec E, E | storecToU E, E | poolfree(E, E)

| poolinit(ρ, τ)x{S} | pool{S}pop(ρ)
Expressions E ::= var | V | E op E | load E | loadFromU x, E | loadc E

| loadcFromU E | cast E to τ | poolalloc(x, E)

| (x, &E[E]) | castint2pointer x, E to τ
Value V ::= uninit | Int | region(ρ)

Fig. 1. Core-language presented in original SAFECode paper.

attempts to prove that rewritten and optimized code respects the SAFECode
security policy. The goal of this paper is to increase the assurance of the SAFE-
Code compiler by formalizing a realistic subset of the language and its type
system, presenting a mechanically-checked proof of soundness, and building a
verified checker that can be used to check code emitted by SAFECode.

2 Overview of SAFECode

Our work builds upon a previous paper describing the SAFECode system [5],
which enforces an object-level integrity policy similar to, but weaker than tradi-
tional notions of type-safety. Conceptually, SAFECode instruments all dangerous
operations such as loads and stores with dynamic checks. To justify the elimina-
tion of unnecessary run-time checks, the paper formalized a core-language, type
system and gave a paper-pencil proof of soundness for the typing rules.

We have reproduced their core-language in Figure 1. SAFECode uses regions,
similar to the approach pioneered by Tofte and Talpin [12] and later refined in
Cyclone [6]. Like these previous systems, a pointer type τ∗ρ is indexed by a region
variable ρ indicating the region of memory it references. However, SAFECode
only places objects of the same type in a given region, allowing region meta-
data to support efficient run-time casts. Objects whose type cannot be statically
determined are put in untyped regions. The type system tracks which regions
are accessible, and hence, which pointers can be safely dereferenced.

More concretely, SAFECode provides a lexically scoped construct of the form
poolinit(ρ, τ){· · · }, which allocates a new region (or pool) to exclusively hold
values of type τ and binds the region to ρ. Regions are typically represented
as lists of pages that can be dynamically grown as new objects are allocated.
Initially, the pages are zero-filled and zero is assumed to be a valid value for
any type. In particular, dereferencing address zero will result in a trapped error
(segmentation fault). Within the scope of the poolinit, programs can allocate
objects of type τ in ρ using poolalloc, which returns a pointer of type τ ∗ ρ.
Such pointers can be dereferenced (via load), updated (via store), or used to
deallocate the object (via poolfree) while in the scope of ρ. Memory reclaimed
in a region can be recycled for use at the same type. At the end of poolinit’s

3

∆ : ρ ⇀ τ Γ : x ⇀ τ

r1: i32

r2: i32*r1

x: i32*r1

y: i32*r1*r2

z: i32*r1

p:i32*r1

w1: i32

w2: i32

1. poolinit(r1, i32) {

2. poolinit(r2, i32*r1) {

3. x = poolalloc(r1, 4);

4. y = poolalloc(r2, 4);

5. store x, y;

6. z = load y;

7. poolfree(z);

8. p = (i32*r1) 42;

9. w1 = load z;

10. w2 = load p;

11. }

12. }

Fig. 2. Example program and typing derivation.

scope, the entire region is deallocated and its memory can be safely recycled for
use in other regions to hold values of potentially different types. SAFECode also
supports checked operations loadU(ρ,q), storeU(ρ,v,q), and checked casts.
These operations do not require that q is ascribed the static type τ ∗ ρ. Rather,
a run-time check is performed to see if q is a valid, τ -aligned pointer into ρ. If
the check fails, then the program is terminated.

Figure 2 illustrates a SAFECode program in the core-language. In the exam-
ple, r1 is a statically-typed region that holds integer values and region r2 is a
statically-typed region holding i32*r1 values. The typing context tracks the set
of region variables in scope and their types (∆) as well as the set of variables and
their types (Γ). The table to the left of the code summarizes the context used to
check each line. For example, after line 1, region r1 is in scope and is assumed
to hold values of type i32. By line 5, we assume variable x has type i32*r1 and
y has type i32*r1*r2. The store instruction type-checks because y is a pointer
value into region r2, x is of the appropriate type i32*r1, and r2 holds values of
type i32*r1. The following load instruction type-checks similarly.

Lines 7 through 10 illustrate how type-homogenous regions enable SAFECode
to relax traditional notions of type-safety. For instance, the dangling pointer
dereference on line 9 type-checks because the region r1 is still live and type-
homogeneity guarantees it will produce a value of type int. SAFECode also
allows arbitrary integers to be casted to pointers. Doing so may necessitate a
run-time check that can fail, but if the integer actually is an address of the appro-
priate type in the appropriate region, the cast will succeed. SAFECode accepts
the above program as well-typed and guarantees for all possible executions that
x and z always point into region r1, and that y always points into region r2.
Furthermore, dereferencing x and z guarantees an integer, and dereferencing y
guarantees a pointer into region r1 (or else zero values).

Currently, there is a huge gap between the original presentation and the
actual SAFECode implementation, which is a large amount of C/C++ code

4

implementing a LLVM bitcode transformation. At a first approximation, there
is a mismatch between the C-like core-language presented in the paper and the
implementation which is at the level of the LLVM IR. Moreover, the lack of any
real language features (e.g. structs, control flow, procedure calls, etc.) in the core-
language makes the argument of type soundness less compelling in the context of
the implementation. For example, the lack of control flow and ability to express
interesting data structures drastically reduces the complexity of reasoning about
a region’s liftime. However, the actual system supports almost the entirety of
LLVM, including extra features such as region-polymorphic functions that induce
a LIFO-ordering of regions not expressible in the original model.

In the rest of this paper, we describe a verified checker that we have con-
structed for the SAFECode compiler using the Coq Proof Assistant [1]. In par-
ticular, we describe (a) our formalization of the syntax and semantics of the
SAFECode variant of the LLVM [7] intermediate language, (b) a new declara-
tive type system that formalizes the SAFECode policy, (c) a proof that the type
system is sound with respect to our semantics, (d) an executable type-checker
for SAFECode, (e) a proof that the type-checker is correct with respect to the
declarative typing rules, and (f) our experiences in type-checking code generated
by the SAFECode compiler.

In addition to scaling the language to the actual implementation, we also
hope that our reformulation of SAFECode is cleaner than the one originally
presented. For example, the original small-step semantics contains 40 opera-
tional transitions (even though it is not very expressive), exposes the details
of region and memory meta-data in the operational semantics leading to a less
modular proof, has memory leaks, and contains many constructs with duplicate
functionality such as load, loadc, loadFromU and loadcFromU. While none of
these prove fatal to the soundness of the type system, we believe a cleaner model
reduces clutter and provides a better intuition for how the proof of soundness is
related to the actual system implementation.

3 Language and Operational Semantics

Here, we describe the formal language and semantic model that we have con-
structed in Coq, but take the liberty of using conventional notation to describe
the ideas instead of the details of the Coq code.1

3.1 Language

The language is derived from the LLVM IR to mirror the SAFECode implemen-
tation as closely as possible and is summarized in Figure 3. Types τ include ar-
bitrary width integers (in), single/double precision floats (d32 and d64), typed-
pointers (τ ∗ ρ), untyped-pointers (U(b) ∗ ρ) to b bytes, arrays ([τ × n]), region-
polymorphic named types, and region-polymorphic functions. Named types are

1 http://people.fas.harvard.edu/~dehuang/projects/sc-formalism.zip

5

x: local variable, ρ: region variable, f : function, `: block label, in: n-bit integer
constant, n: integer size, d: single/double precision float

type τ ::= in | d32 | d64 | τ ∗ ρ | U(b) ∗ ρ | name〈ρ〉 | [τ × n] | ∀ρ.τρ → τρ
name env Υ ::= name ⇀ 〈ρ〉{τ1ρ; · · · ; τnρ}
operand o ::= x | in | f | d | undef(τ) | blockaddr(f, `) | null
insn ι ::= x = o1 binop o2 | x = o1 icmp o2 | x = o1 fbinop o2 |

x = o1 fcmp o2 | x = iconv τ1 o to τ2 | x = fconv τ1 o to τ2
x = ptrtoint τ1 o to τ2 | x = inttoptr τ1 o to τ2 |
x = extractvalue τ1 o, τ2 in | x = insertvalue τ1 o1, τ2 o2 in |
x = bitcast τ1 o to τ2 | x = select τ1 o1, τ2 o2, τ3 o3 | exit |
x = getelementptr τ1 o1, τ2 o2 | x = getelementptrU τ o1 o2 |
x = load τ o | store τ1 o1, τ2 o2 |
x = poolcheck ρ τ o | x = poolcheckU ρ c o | poolfree τ o

terminator tm ::= return τ x | br ` | br o `1 `2 | switch τ o, ` τ ∗ o ∗ ` |
indirectbr τ o, ` | x = poolalloc τ, ρ, i, ` |
x = τ call o 〈ρ〉(o), ` | x = τ unsafecall o 〈ρ〉(o), ` |

φ node Φ ::= x = φ(o)` : τ
block blk ::= [Φ1; . . . Φn; ι1; . . . ιm; tm]
function fn ::= τ f〈ρp〉(x : τρp

){
ρl = poolinit τρp∪ρl

;

body : `→ blk
}

fn table F : f ⇀ fn

Fig. 3. Abstract syntax for our SAFECode language. We use x to denote a list of x’s.
The subscripts on types indicate which regions the types can mention.

used to support aggregate and (iso-)recursive data structures. For example, to
define a linked-list node parameterized over a region ρ, we can write the type
node = 〈ρ〉{i32; node ∗ ρ}. The notation name〈ρ〉 indicates that a named type
is instantiated with the regions specified by ρ. A global environment Υ is used
to associate names with their definitions. Union types can be represented using
LLVM’s encoding as a byte struct whose size is the maximum size of all the
types in the union.

The syntax supports nested aggregates (i.e., structs) through names, but in-
ternally, we only manipulate flattened primitive types. For example, given named
types Foo = {i32; i32*} and Bar = {Foo; i32}, the flattened representation
of Bar is {i32; i32*; i32}. Flattening aggregates in this fashion supports more
(type-safe) projections, and avoids the need for complicated path expressions to
calculate offsets. Given a name environment Υ , we define a partial function [(τ)
that flattens τ into a vector of primitive (non-aggregate) types.

[(in) = [in] [(d32) = [d32] [(d64) = [d64] [(τ ∗ ρ) = [τ ∗ ρ]

[(U(b) ∗ ρ) = [U(b) ∗ ρ] [([τ × n]) = [(τ) ++ · · · ++ [(τ)

[(name〈ρ〉) = ([(τ1) ++ · · · ++ [(τn)){ρ/ρ′} when Υ (name) = 〈ρ′〉{τ1; · · · ; τn}

6

Note that [(−) stops when it encounters a pointer, and is thus well-founded
when recursive uses of names are limited to positions under a pointer (as in C).
Here, we have omitted details of padding and alignment, which are covered in
our Coq development.

Basic blocks consist of a sequence of φ-nodes followed by a sequence of de-
terministic instructions, and end with a terminator instruction. Instructions
manipulate operands which are either variables or constants, and are mostly
derived from the LLVM IR. The instructions are organized into two categories:
The first contains instructions modeled deterministically (i.e., functionally). The
second category contains LLVM terminator instructions (i.e., control-flow oper-
ators) and instructions modeled non-deterministically (i.e., axiomatically) such
as poolalloc. Unlike LLVM, we consider a call to terminate a block, as a call
will generally have non-deterministic behavior. Another difference with LLVM
is that our getelementptr instruction does not perform multistep indexing be-
cause the type environment for aggregate data structures is already flattened.

Functions abstract over a set of caller-provided regions, and begin by defining
a set of local regions which are scoped over the lifetime of the function invoca-
tion. The syntax prevents new regions from being allocated in the function body.
While the actual SAFECode system allows regions to be allocated anywhere, we
opt for this design because in practice, the compiler usually emits poolinit in-
structions at the beginning of a function. We encode allocas (stack allocations)
as a poolalloc and poolfree.

One difference between our language and the SAFECode implementation is
that we introduce a dedicated untyped pointer U(b) ∗ ρ to make it easier to
express that we can safely dereference b bytes, but do not know what those
bytes are. As a result, the syntax provides two versions of poolcheck/U and
getelementptr/U to work with types in the typed-region case and bytes in the
untyped-region case.

3.2 Representation of run-time values

All run-time values are represented as a list of bit strings:

val ::= [v1; v2; . . . ; vn]
v ::= bitn(i) (i ∈ [0..2n))

For example, the 16-bit integer 0xF00D is represented as [bit16(0xF00D)], whereas
a struct containing a 16-bit integer and 32-bit pointer {0xBEEF; 0x0BADF00D}
is represented as [bit16(0xBEEF), bit32(0x0BADF00D)]. Note that pointers and
integers (of the appropriate size) have the same representation.

There are other possible representations. For instance, CompCert [8, 9] treats
a pointer as a symbolic block number and an offset within that block, (b, o). This
“Swiss cheese” model effectively enforces object isolation: we simply cannot get
to an object at address a through pointer arithmetic on the base address of a
different object b. Such a model makes sense when trying to define the formal
semantics of C which makes actions, such as treating an integer as a pointer
undefined.

7

Local environment env : var ⇀ val Primitive types K := {in, d32, d64, τ ∗ ρ,
Region instantiation σ : P ⇀ R U(b) ∗ ρ, ∀ρ.τ → τ}
Memory M : mem t Region names P := {ρ1, . . . , ρn}
Live region set L : set R Run-time regions R := {r1, . . . , rn}
Heap typing Σ : heap t Heap type heap t := Z ⇀ (K,R)

Execution context E ::= (fn, blk, env,Σ, σ,L)
Execution stack S : list E Machine state ms ::= (M,E, S)

Fig. 4. Components of the abstract machine.

In our case, SAFECode allows integers to be used as pointers provided that
the compiler can statically prove that it is safe or it is guarded with a dynamic
check. To support this behavior, we found the simplest approach for our model
was to treat all run-time values as bit strings.

3.3 Abstract Machine

The components of our abstract machine are presented in Figure 4. A machine
state is represented by the tuple (M,E, S), where M is the current memory, E is
the current execution context, and S is the control stack of execution contexts.
An execution context contains information relevant to the computation in the
current stack frame, including the function definition (f), a currently executing
basic block (b), and an environment (env) mapping variables to run-time values.
The last three components of E are used to support regions. The first of these
is the heap typing Σ, which maps addresses to a pair of a primitive type and
region. Conceptually, the heap typing holds the run-time meta-data, allowing the
system to perform a run-time check. Next, σ contains a mapping of the region
variables written in code to their actual run-time regions. The component L
represents the set of live regions.

3.4 Memory Model and Memory Management

At the level of our abstract machine, we do not want to specify how regions
are represented, nor the meta-data that is needed to manage memory. Rather,
we parameterized our development over an abstract memory management in-
terface specified axiomatically. To ensure that the axioms are consistent, we
implemented a simple allocation strategy and proved that the strategy satisfied
the axioms.

We treat memory as a partial map from integers to bytes, paired with some
allocator-specific meta-data of abstract type:

mem t : (Z ⇀ byte)× metadata t

Conceptually, this meta-data can encode information such as the size of memory
or a specific allocation strategy. In our instance of the memory model, we use

8

mload : mem t× Z×K → val⊥
mstore : mem t× Z×K × val→ mem t⊥
mpoolalloc : mem t× set R× heap t×K × N×R → (Z ∗ mem t)⊥
mpoolfree : mem t× Z→ mem t⊥
mpoolinit : mem t× σ × set R× heap t× (R ∗ K)→ (mem t ∗ heap t ∗ R)⊥
mpooldel : mem t× set R× heap t× set R→ (mem t ∗ heap t ∗ set R)⊥
mcheck : heap t× Z×R×K → bool

Fig. 5. Memory signature. X indicates a list of values drawn from the domain X.

mloadM 0 τ = ⊥ mstoreM 0 τ v = ⊥
mload (mstoreM a τ v) a τ = v

mload (mstoreM a1 τ1 v) a2 τ2 = mloadM a2 τ2 when

[a1, a1 + sizeof(τ1)) disjoint [a2, a2 + sizeof(τ2))

mload (#2 mpoolallocM L Σ τ ′) a τ = v =⇒ mloadM a τ = v

mload (mpoolfreeM a) a′ τ = mloadM a′ τ

Fig. 6. Selected memory operation equations. We write #2 for second projection.

the meta-data to ensure that all addresses in use fall within the range of 64-bit
machine integers to model a finite memory with 264 addresses.

We summarize the memory operations and sketch the pre- and post-conditions
in Figures 5, 6 and 7. The mload function reads sizeof(τ) bytes from the speci-
fied address and returns an optional value. The mstore function writes sizeof(τ)
bytes coming from the specified value to the specified address and optionally re-
turns the updated memory. Loading or storing to the null pointer 0 results in
failure. We note the types are used strictly for size information.

The operations mpoolalloc and mpoolfree are used to allocate and free
memory within a specified region. Unlike conventional allocation, mpoolalloc
does not generate fresh locations, i.e., the heap typing remains invariant. Instead,
it checks to see if there is a block of memory mapped in the heap typing at the
specified type and region. If successful, mpoolalloc returns a pointer to that
memory and can update its internal meta-data. The specification allows repeated
calls to mpoolalloc for the same type to return the same pointer. In practice, one
would use the internal meta-data for a freshness guarantee. Similarly, mpoolfree
does not change the heap typing, but reflects that its meta-data might have
changed to reclaim a set of addresses. This allows reclaimed addresses to be
recycled for allocations of the same type.

The operation mpoolinit allocates fresh locations for a specified region. It
first generates a region name fresh from L. It then allocates fresh locations for
that region, zeroes out the allocated memory, and updates the heap typing to

9

{M(a) = b1 ∧ . . . ∧M(a+ sizeof(τ)) = bn }
mloadM a τ = v

{ v = endian [b1, . . . , bn] }

{ }
poolallocM L Σ τ n r = (a,M ′)
{ mcheck Σ a r τ = true }

{ ∃v2, mloadM a τ = v2 }
mstoreM a τ v1 = M ′

{M(a) = b1 ∧ . . . ∧M(a+ sizeof(τ)) = bn
where v1 = endian(b1, . . . , bn) }

{ }
mcheck Σ a r [τ1, . . . , τn] = true

{Σ(a) = (τ1, r),
Σ(a+ sizeof(τ1)) = (τ2, r), . . .}

{ }
poolinitM σ L Σ (ρ, τ) = (M ′, Σ′, r)

{ a1, . . . , an fresh ∧ r /∈ L ∧ [(τ) = [τ1, . . . , τm] ∧
Σ′ = {ai 7→ (τ1[σ], r)}] {ai + sizeof(τ1) 7→ (τ2[σ], r)}] . . .]Σ ∧

mloadM ai τ = ⊥ for i = 1, . . . , n ∧ mloadM ′ ai τ = 0 for i = 1, . . . , n }

{r ∈ L}
mpooldelM L Σ r = (M ′, Σ′,L′)

{ L = r ∪ L′ ∧Σ = (a1 7→ (τ, r))] . . .] (an 7→ (τ, r))]Σ′ ∧
mloadM ′ a1 τ = ⊥ ∧ . . . ∧ mloadM ′ an τ = ⊥}

Fig. 7. Axiomatic specification of memory operations. We use M(a) to abbreviate the
first projection of M at a, and τ [σ] to instantiate τ with regions specified in σ.

map the appropriate addresses to the appropriate types and region.2 The opera-
tion mpooldel is the inverse of mpoolinit. It runs through the input heap typing
and frees up all addresses mentioning the specified regions. Lastly, the opera-
tion mcheck models a run-time check. Given a heap typing, it verifies whether
an address belongs to a region at the correct type. Note that mcheck works at
the level of primitive types, so if the check returns true for a specified address,
region and list of primitive types, it will also return true for any truncation of
the sequence, holding the other parameters constant.

3.5 Operational Semantics

We structure the semantics as an evaluation function (Coq function) and a small-
step relation (inductive predicate) on abstract machine states.

Figure 8 shows selected definitions from our evalblock function, which com-
putes the resulting memory and local environment after evaluating all deter-
ministic instructions in a basic block. The parts of the abstract machine not
mentioned such as the control stack remain invariant when executing a basic
block. There are two distinguished failure states Err and Halt. The Err state
denotes a stuck state that our soundness theorem will rule out. A transition to
the Err state can occur if we look up a variable that is not bound in the environ-
ment. A transition to the Halt state indicates that the run-time has prevented
2 In our Coq development, we break this operation into two parts, one for fresh region

creation, and one for region allocation to support mutually recursive regions.

10

evalblock nilM env =

Ok(M, env)

evalblock (ι :: ι) M env =

match eval ι M env with

| Ok(M ′, env′) =>

evalblock ι M ′ env′

| ans => ans

eval [x = poolcheck ρ τ o] M env =

match eval op o env with

| Ok(bit(a)) =>

if mcheck Σ a σ(ρ) τ [σ]

then Ok(M, env[x 7→ ptr(a)])

else Halt

| => Err

Fig. 8. Selected evaluation rules. We use the notation τ [σ] to indicate applying a region
instantiation map σ to τ .

an unsafe memory operation. For example, a call to poolcheck may fail, halting
the system. The functions describing instruction evaluation are straightforward,
and make use of the definitions from our memory model in the case of memory
instructions, or machine arithmetic in the case of binary operations.

Figure 9 shows almost all of our operational rules, omitting just the failure
transitions for call and poolalloc, and the unsafecall and branch cases. A
function call may fail if we run out of memory to hold local regions, while a
poolalloc may fail if a specific region runs out of memory. The small-step seman-
tics is compact because it pushes most of the work into the evaluation function.
This is beneficial for model validation since the evaluation function is already
executable. We only need to write an interpreter for the terminator instructions
such as branch and return (which we can’t do in Coq since it might diverge), and
prove that the driver for terminator instructions respects the relation. Further-
more, if we grow a language by adding additional instructions, these instructions
are unlikely to be terminator instructions, so validation should continue to scale.

4 Type System

Our goal to support real SAFECode programs means that the type system is
quite complex. For the sake of brevity, we present a subset of the rules here and
elide many details that are present in our Coq-development, such as sub-typing
relations, primitive type manipulations, and contexts related to φ-node typing.

4.1 Typing rules

At its core, the type system tracks region lifetimes and ensures that type-
homogeneity is preserved for typed-regions. The key idea is that pointers into
live regions can always be safely dereferenced at the appropriate type. The rules
used to define the typing judgments are sketched in Figure 10. Throughout,
we assume a context including the function table F mapping function names
to their definitions, and a type environment Υ mapping named types to their

11

eval
evalblock E.b.ι M E.env = (M ′, env′)

(M,E, S)→ (M ′, E[env := env′], S)

eval-halt
evalblock E.b.ι M E.env = Halt

(M,E, S)→ Halt

return
mpooldel(M,L, Σ) = (M ′, Σ′′,L′′) env(x1) = v

(M, (f, [b.ι = return τ x1], env,Σ, σL),
(f ′, [b′.nd = x2 = call τ ′ o′〈ρ〉(x), l′)], env′, Σ′, σ′,L′) :: S)→

(M ′, (f ′, [b′.tm = br l′], (x2 7→ v) ∪ env′, Σ′′, σ′,L′′), S)

call
F (o) = τ f ′〈ρp〉(y : τρp

){ρl = poolinit τρp∪ρl
; body : `→ blk}

b′ = f ′.entry env′ = env[{y 7→ env(x)} {ρp 7→ σ(ρ)} = σ′e
{ρl 7→ rgns′} ∪ σ′e = σ′ mpoolinit(M,σ′,L, Σ, ρl ∗ τρp∪ρl

) = (M ′, Σ′, rgns′)

(M, (f, [b.ι = (x1 = call τ ′ o′〈ρ〉(x), l′)].env,Σ, σ,L), S)→
(M, (f ′, b′, env′, Σ′, σ′b, rgns

′ ∪ L), (f, [b.ι = (x1 = call τ ′ o′〈ρ〉(x), l′)], env,Σ, σ′,L) :: S)

poolalloc
[(τ) = τ mpoolalloc(M, lo,L, Σ, τ [σ], n, σ(r)) = (a,M ′)

(M, (f, [b.nd = (x = poolalloc τ, ρ, n, `)], env,Σ, σ,L), S)→
(M, (f, [b.tm = br `], env[(x 7→ ptr(a))], Σ, σ,L), S)

Fig. 9. Selected operational rules. The function table F remains constant throughout
operation and is not shown in the rules. The notation a.b projects b from a.

definitions. In addition, the judgments use region contexts ∆ to determine the
region variables in scope, variable contexts Γ mapping variables to their types,
and a label environment Ψ mapping block labels to their preconditions.

The well-formedness rules for types and instruction operands are straight-
forward. A type is well-formed (∆ ` τ) if all the regions that appear free in
the type are in the region context ∆. Function types are required to be locally
closed. That is, the argument and return types may only depend upon the region
variables bound by the function. The second judgement (∆ ` o : τ) determines
when operands are well-formed at a type.

The judgment for typing instructions has the form ∆;Γ ` ι : Γ ′. For example,
the load rule checks that the operand has pointer type τ ∗ρ and that the pointer
type is well-formed. The postcondition guarantees that a τ value has been loaded
and passes that context forward to the next instruction. The postcondition for
poolcheck says that no matter what the operand is, we can add the checked
type into the context. There is a run-time check to ensure that this rule is sound.

The poolalloc rule is conceptually similar to a malloc rule where the result is
a pointer of the correct type. The rule additionally checks that the type requested
corresponds to the region’s type. Thus, we cannot allocate an i32 in a region
that holds {i32; i32}, although we can load an i32 out. Note that a request
for n objects of type τ only reveals that the pointer to the front of that object
is valid. This captures the essence of SAFECode that type-safety is guaranteed

12

∆ ` τ Well-formed type

∆ ` in ∆ ` d32 ∆ ` d64

∆ ` τ ρ ∈ dom(∆)

∆ ` τ ∗ ρ
ρ ∈ dom(∆)

∆ ` U(b) ∗ ρ

Υ (name) = τ ∀ρ ∈ ρ, ρ ∈ dom(∆)

∆ ` name〈ρ〉
ρ ` τ → τ

∆ ` ∀ρ.τ → τ

∆ ` τ n 6= 0

∆ ` [τ × n]

Γ ` o : τ Well-formed operand (selected rules)

{τ ′ ∗ ρ, U(b) ∗ ρ} /∈ τ
Γ ` undef(τ) : τ

F (f) = f〈ρ〉(x : τ){body} → τ

Γ ` f : ∀ρ.τ → τ

Γ (x) = τ

Γ ` reg x : τ

∆;Γ ` ι : Γ Well-formed instruction (selected rules)

∆;Γ ` o : τ ∗ ρ ∆ ` τ ∗ ρ
∆;Γ ` x = load (τ ∗ ρ) o : Γ [x 7→ τ]

∆;Γ ` o : τ ′ ∆ ` τ ∗ ρ
∆;Γ ` x = poolcheck ρ τ o : Γ [x 7→ τ ∗ ρ]

∆;Ψ ;Γ ` tm Well-formed terminator instruction (selected rules)

Γ ` o : τ ∆ ` τ
∆;Ψ ;Γ ` return τ o

∆;Ψ ;Γ [x 7→ τ ∗ ρ] ` br ` ∆(ρ) = τ

∆;Ψ ;Γ ` x = poolalloc τ, ρ, n, `

Γ ` o : ∀ρp. τρp → τ ′ρp
Γ ` o : τ [ρ/ρp]

∀ρ ∈ ρ. ρ ∈ dom(∆) τ = τ ′[ρ/ρp] [(τ) = τ ∆;Ψ ;Γ [x 7→ τ] ` br `

∆;Ψ ;Γ ` x = τ call o〈ρ〉(o), `

Ψ ;∆p;∆l ` func Well-formed function

ρp ∩ ρl = ∅ ∆p ` ρp ∆l ` ρl ∆p ⊆ ∆l

∀τ ∈ τ l. ∆l ` τ ∆p ` τ ∀τ ∈ τ1. ∆1 ` τ ∀` ∈ dom(body). Ψ ;∆l ` body(`)

Ψ ;∆p;∆l ` τ f〈ρp〉(x : τ1){ρl = poolinit τ2; body : `→ blk}

FΨ ;F∆ ` prog Well-formed program

FΨ (fi) = Ψf F∆(fi) = (∆p,∆l) Ψf ;∆p;∆l ` fi, for i = 1, . . . , n

FΨ ;F∆ ` {f1, . . . , fn}

Fig. 10. Selected typing rules.

13

at the region-level, not for individual pointers. The call rule fully instantiates
the function’s polymorphic regions and then checks that the arguments have the
appropriate types.

The typing rule for a function declaration (Figure 10) imposes a LIFO order-
ing on region lifetimes. The rule uses two region contexts ∆p and ∆l to accom-
plish this. ∆p mentions only the regions the function is polymorphic in, while ∆l

extends ∆p with locally allocated regions. We type the function signature and
return type under ∆p and the function body under context ∆l. This ensures that
regions never escape from callees to callers and that the only regions in scope
of a function body are live. Typing for a function body (ommited) is done in a
straightforward manner by typing all basic blocks in the body using the rules for
deterministic and terminator instructions. The top-level typing rule ensures that
all functions are well-formed. It introduces two new contexts FΨ : f ⇀ Ψ and
F∆ : f ⇀ (∆p, ∆l). The former maps a function to its basic block preconditions.
The latter maps a function to its appropriate region contexts. The top-level
mapping ensures that mutually recursive functions use consistent contexts.

4.2 Type Soundness

The most difficult part of the proof reduces to arguing about the LIFO structure
of region lifetimes to ensure that pointers only point into live regions. As func-
tions can only be declared at the top-level in LLVM, we do not need to worry
about regions escaping through closures. The key invariant to highlight is that
the heap typing stack is well-formed.
Definition (Well-formed stack: heap typing) For any two adjacent execution
contexts E1 and E2, where E1 is the callee frame and E2 is the caller frame,

(a) E2.Σ ⊆ E1.Σ
(b) E2.L ∪ {r1 . . . rn} = E1.L ∧ E2.L ∩ {r1 . . . rn} = ∅
(c) E2.L ` E2.Σ
(d) E1.L ` E1.Σ

In words, the heap typing increases monotonically (in terms of addresses mapped)
as we move from caller to callee frames in the execution stack. Similarly, the live
region set grows monotonically. Lastly, the regions mentioned in an execution
context’s heap typing are closed under its respective live region set.

We now state the main lemmas that are used in the proof of type soundness.

Lemma 1. (Progress and Preservation of basic block evaluation) If FΨ ;F∆ `
{f1, . . . , fn} ∧ ` (M,E, S), then either evalblk E.b.ι M E.env = Ok(M ′, env′) ∧ `
(M ′, E[env := env′], S) or evalblk E.b.ι M E.env = Halt.

The proof is mechanized in Coq, but the interesting bit is that our mixed seman-
tics allows us to prove progress and preservation simultaneously as proving that
our evaluation function evalblk preserves the invariants also implies that we
must be able to take a step. One nice property of this structure is if we extend

14

the language by adding additional instructions to evalblk, we only need to mod-
ify our proof of type soundness in one place. This was particularly useful when
we were scaling our language out to handle real programs, as many instructions
that we added later (e.g. insertvalue) required minimal proof changes.

Lemma 2. (Preservation) If FΨ ;F∆ ` {f1, . . . , fn} ∧ ` (M,E, S) ∧ (M,E, S) →
(M ′, E′, S′), then ` (M ′, E′, S′).

Recall that the core of the proof reduces to arguing about LIFO region lifetimes.
As our abstract memory interface specifies that mpoolinit (used on a function
call) and mpooldel (used on a return) are inverses of each other with respect to
the heap typing, the proof reduces to invoking this fact to argue that a callee
returns the heap-typing to the state expected by the caller.

Lemma 3. (Progress) If FΨ ;F∆ ` {f1, . . . , fn} ∧ ` (M,E, S), then either (M,E, S)

→ (M ′, E′, S′) ∧ ` (M ′, E′, S′) or (M,E, S)→ Halt.

This lemma has few cases because of the small operational semantics and is
straightforward to prove. Our soundness result implies that a pointer with type
τ ∗ ρ in a well-typed program always points into region ρ and references a τ .

5 Evaluation

The previous section described a declarative type system and argued that it is
sound. We have also built an algorithmic type system tc (i.e., a type-checker as
a function) and proved that it respects the declarative typing rules:

Lemma 4. (Type-checker sound) If tc(FΨ , F∆, {f1, . . . , fn}) = true, then FΨ ;F∆ `
{f1, . . . , fn}.

The type-checker is straightforward to write and prove sound. It can be ex-
tracted as an executable OCaml program to serve as a verified type checker for
SAFECode. Unfortunately, the SAFECode compiler emits code that does not
adhere strictly to the SAFECode type system. For ease of code generation, the
compiler erases almost all region and type information from the LLVM bitcode.
This significantly increases the difficulty of applying our type-checker as we now
need to perform type-inference.

We had to write two pieces of code to close this gap. First, we wrote an
LLVM pass in C++ that crawls SAFECode’s internal structures that annotates
the resulting code with region information. Second, we wrote an OCaml pass
that performs type-inference and translates the input LLVM bitcode into our
representation. The bulk of the OCaml pass is dedicated to reconstructing the
types that SAFECode erases. In principle, we should not need to write this pass
because conceptually, the SAFECode compiler produces this typing derivation
when instrumenting code. Our type-checker checks the output of these two pieces
of code. The Coq formalization is about 12000 lines of code, while our OCaml
translation and inference pass is about 4800.

15

5.1 Experimental Results

In addition to the two pieces of code, we had to make a few simplifications that
possibly introduce unsoundness into the system to type-check real code. First,
we translate calls to library functions where we do not have the code or are not
instrumented by SAFECode into unsafecalls. We also cannot type variable
argument functions and certain LLVM intrinsic functions and translate those
to unsafecalls as well.3 Lastly, to keep our type system from becoming too
unwieldy, we choose not to add a typing context to handle aliases. In practice,
SAFECode sometimes calls poolcheck on a variable x, and later uses an alias
of x without a check. As a workaround, every time a poolcheck is encountered
during translation, we emit an extra poolcheck for x’s aliases.

We ran our type-checker on micro-benchmarks included with the SAFECode
distribution and on the Olden benchmarks [2], a pointer-intensive test suite on
which the original SAFECode system was evaluated. We discovered some bugs
with the current SAFECode4 instrumentation of a few programs in the Olden
benchmarks, mostly with region instantiations. In the program bh, we found
that a call to a region-polymorphic function was not instantiated with a re-
gion. In the program em3d, we found that a pointer to a function-local pool
was allocated and returned to the caller, violating the LIFO region invariant.
We also discovered some false-positives. For example, in the program perimeter,
SAFECode performs an interval-analysis over multiple program paths to deter-
mine that an array index variable is statically in-bounds. This is a limitation
of our type-checker, as it cannot reason about the above analysis. Although our
type-checker is still a prototype, it is already effective at finding bugs.

6 Related and Future Work

Zhao et al. [13] presented a semantics for the LLVM IR formalized in Coq and
used it to prove the correctness of a closely related, but alternative technique
for enforcing spacial memory safety on C code called Softbound [10]. On the
one hand, their proof is more impressive because it shows the correctness of the
transformation. On the other hand, their model for LLVM’s IR cannot handle
idioms that arise in real C/C++ programs, (e.g., casting a pointer to an integer
and then back) because their treatment of memory is too high-level. Further-
more, our type-checker can be used not only to validate the initial transformation
of the code, but also the code that comes out of subsequent optimizations.

In addition to SAFECode, there is a rich history of region-based type systems,
first pioneered by Tofte and Talpin [12] and later refined in Cyclone [6] that
our type system draws inspiration from. In many regards, our type system is
much simpler because regions can only be passed “downwards” to functions
and never returned. Furthermore, SAFECode does not support lexically scoped

3 Consequently, preservation holds only on code that does not contain unsafecalls.
4 The system we evaluated our type-checker on is the most current implementation

and not the one presented in the original paper.

16

closures or existential types, so there is no need for type-and-effects systems.
Languages such as Cyclone had many more cases in which region names could
escape function scope, and thus required a much more complicated type system.
In contrast, the regions in SAFECode and our type system are type-homogenous
and allow explicit deallocation of memory in these regions, operations which were
not permitted except in restricted cases in those languages.

In our future work, we hope to thoroughly test our semantics to make sure
that it is compatible with the actual semantics implemented by the LLVM com-
piler and SAFECode run-time system. However, we structured our semantics to
lighten the burden of validation as explained in Section 3.

Acknowledgements We thank Gregory Malecha, John Criswell, Joseph Tas-
sarotti, Stephen Chong and our reviewers for their helpful discussions.

References

1. Coq Proof Assistant. http://coq.inria.fr/.
2. M. C. Carlisle. Olden: Parallelizing Programs with Dynamic Data Structures on

Distributed-Memory Machines. PhD thesis, 1996.
3. Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Perik-

lis Akritidis, Austin Donnelly, Paul Barham, and Richard Black. Fast Byte-
Granularity Software Fault Isolation. In Proc., SOSP ’09, 2009.

4. John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure
Virtual Architecture: A Safe Execution Environment for Commodity Operating
Systems. In Proc., SOSP ’07, 2007.

5. Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode: Enforcing
Alias Analysis for Weakly Typed Languages. In Proc., PLDI ’06, 2006.

6. Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and
James Cheney. Region-Based Memory Management in Cyclone. In Proc., PLDI
’02, 2002.

7. Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proc., International Symposium on Code
Generation and Optimization (CGO’04), Mar 2004.

8. Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7),
July 2009.

9. Xavier Leroy and Sandrine Blazy. Formal Verification of a C-like Memory Model
and Its Uses for Verifying Program Transformations. J. Autom. Reason., 41(1),
July 2008.

10. Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Memory Safety for C. In
Proc., PLDI ’09, 2009.

11. George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. In Proc., POPL ’02, 2002.

12. Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf.
Comput., 132(2), February 1997.

13. Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.
Formalizing the LLVM Intermediate Representation for Verified Program Trans-
formations. In Proc., POPL ’12, 2012.

