import numpy as np
from typing import *

from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
from qiskit.visualization import plot_histogram    
from qiskit.quantum_info import Statevector

Foundations: A Single Qubit System#

We’ll introduce a single qubit system which encodes quantum information. A qubit is defined in terms of complex numbers. We’ll also introduce the ideas of superposition and measurement.

References

  1. Introduction to Classical and Quantum Computing: Chapter 2

A Qubit#

A qubit \(|q\rangle\) is as a complex-valued vector satisfying a normalization constraint. Define the set

\[\begin{split} Q(1) := \{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{C}^2, \sqrt{a\bar{a} + b\bar{b}} = 1 \} \,. \end{split}\]

Then a qubit \(|q\rangle \in Q(1)\). The notation \(|q\rangle\) indicates a ket from bra-ket notation (also known as Dirac notation). A bra is the conjugate transpose of a ket:

\[ \langle q | := |q\rangle^{\dagger} \,. \]
def qubit_condition(q: Union[np.array, Statevector]) -> np.array:
    return q[0]*np.conjugate(q[0]) + q[1]*np.conjugate(q[1])

def is_qubit(q: Union[np.array, Statevector]) -> bool:
    return np.allclose(np.array([1.]), qubit_condition(q))
maybe_q1 = np.array([.5, .5j])
print(f"Is {maybe_q1} a qubit: {is_qubit(maybe_q1)}")

maybe_q2 = np.array([1/np.sqrt(2), 1/np.sqrt(2)])
print(f"Is {maybe_q2} a qubit: {is_qubit(maybe_q2)}")
Is [0.5+0.j  0. +0.5j] a qubit: False
Is [0.70710678 0.70710678] a qubit: True

Qubits and Quantum Information#

Classically, a bit is a unit of information that can be used to quantify the amount of classical information needed to describe the classical state of a classical system. A classical system is any physical system that is governed by the laws of classical physics such as our familiar digital computers. Similarly, a qubit is a unit of quantum information that can be used to quantify the amount of quantum information needed to describe the quantum state of a quantum system.

  1. A quantum system is a physical system that is governed by the laws of quantum mechanics.

  2. A quantum state is a mathematical description of the state of a quantum state. Thus the quantum state of a single qubit system can be fully described by \(|q\rangle \in Q(1)\).

Qubits as Quantum Bits#

  1. The qubit

\[\begin{split} |0\rangle := \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} \end{split}\]

is the quantum analogue of a zero bit.

  1. The qubit

\[\begin{split} |1\rangle := \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix} \end{split}\]

is the quantum analogue of a one bit.

zero = Statevector(np.array([1.0 + 0j, 0j]))  # 0 qubit
print(f"Is {zero} a qubit: {is_qubit(zero)}")
zero.draw("latex")
Is Statevector([1.+0.j, 0.+0.j],
            dims=(2,)) a qubit: True
\[ |0\rangle\]
one = Statevector(np.array([0j, 1.0 + 0j]))   # 1 qubit
print(f"Is {one} a qubit: {is_qubit(one)}")
one.draw("latex")
Is Statevector([0.+0.j, 1.+0.j],
            dims=(2,)) a qubit: True
\[ |1\rangle\]

Non-Classical Behavior#

A qubit behaves differently than a classical bit. Put another way, a unit of quantum information encodes different information compared to a unit of classical information. We’ll see two of these:

  1. superposition and

  2. measurement.

Quantum Behavior: Superposition#

Unlike a bit that can only take on the value of zero or one, a qubit can take on more than just two states. Here’s an example.

q = Statevector(np.array([1/np.sqrt(2), 1/np.sqrt(2)]))
print(f"Is {q} a qubit: {is_qubit(q)}")
q.draw("latex")
Is Statevector([0.70710678+0.j, 0.70710678+0.j],
            dims=(2,)) a qubit: True
\[\frac{\sqrt{2}}{2} |0\rangle+\frac{\sqrt{2}}{2} |1\rangle\]

Fact: Qubit Decomposition#

Every qubit \(|q\rangle\) can be written as

\[ |q\rangle = \alpha|0\rangle + \beta |1\rangle \]

where \(\alpha, \beta \in \mathbb{C}\) and \(|\alpha|^2 + |\beta|^2 = 1\). We’ll see later how we can use the language of linear algebra to describe a qubit in a succinct matter.

q_p = 1/np.sqrt(2)*zero + 1/np.sqrt(2)*one
print(f"Is {q_p} a qubit: {is_qubit(q_p)}")
q_p.draw("latex")
Is Statevector([0.70710678+0.j, 0.70710678+0.j],
            dims=(2,)) a qubit: True
\[\frac{\sqrt{2}}{2} |0\rangle+\frac{\sqrt{2}}{2} |1\rangle\]
q2 = np.sqrt(1/3)*zero + np.sqrt(2/3)*one
print(f"Is {q2} a qubit: {is_qubit(q2)}")
q2.draw("latex")
Is Statevector([0.57735027+0.j, 0.81649658+0.j],
            dims=(2,)) a qubit: True
\[\frac{\sqrt{3}}{3} |0\rangle+\frac{\sqrt{6}}{3} |1\rangle\]
q3 = np.sqrt(-1/3*1j)*zero + np.sqrt(2/3*1j)*one
print(f"Is {q3} a qubit: {is_qubit(q3)}")
q3.draw("latex")
Is Statevector([0.40824829-0.40824829j, 0.57735027+0.57735027j],
            dims=(2,)) a qubit: True
\[(\frac{\sqrt{6}}{6} - \frac{\sqrt{6} i}{6}) |0\rangle+(\frac{\sqrt{3}}{3} + \frac{\sqrt{3} i}{3}) |1\rangle\]

Superposition#

  1. The qubits above are not a zero or a one.

  2. Instead, they are said to be in a superposition of zero and one.

  3. In this way, we can say that a qubit carries different information from a single classical bit.

Quantum Behavior: Measurement#

  1. Measurement is an operation that destroys superposition and stochastically returns either \(|0\rangle\) or \(|1\rangle\).

  2. In other words, it is an operation that converts quantum information into classical information.

Born Rule#

The probability of obtaining \(|0\rangle\) or \(|1\rangle\) is given by Born’s rule, which states that we obtain

  • \(|0\rangle\) with probability \(|\alpha|^2\) and

  • \(|1\rangle\) with probability \(|\beta|^2\).

This is why we require that a qubit satisfies the normalization criterion: \(|\alpha\rangle^2 + |\beta\rangle^2 = 1\).

print("Probabilities:", q.probabilities_dict())
q.draw("latex")
Probabilities: {np.str_('0'): np.float64(0.4999999999999999), np.str_('1'): np.float64(0.4999999999999999)}
\[\frac{\sqrt{2}}{2} |0\rangle+\frac{\sqrt{2}}{2} |1\rangle\]
print("Probabilities:", q2.probabilities_dict())
q2.draw("latex")
Probabilities: {np.str_('0'): np.float64(0.3333333333333333), np.str_('1'): np.float64(0.6666666666666666)}
\[\frac{\sqrt{3}}{3} |0\rangle+\frac{\sqrt{6}}{3} |1\rangle\]
print("Quantum state", q3)
print("Probabilities:", q3.probabilities_dict())
q3.draw("latex")
Quantum state Statevector([0.40824829-0.40824829j, 0.57735027+0.57735027j],
            dims=(2,))
Probabilities: {np.str_('0'): np.float64(0.3333333333333334), np.str_('1'): np.float64(0.6666666666666666)}
\[(\frac{\sqrt{6}}{6} - \frac{\sqrt{6} i}{6}) |0\rangle+(\frac{\sqrt{3}}{3} + \frac{\sqrt{3} i}{3}) |1\rangle\]

Measurement and Histograms#

We can use histograms to aggregate the results of measurement.

def demonstrate_measure(q):
    sim = AerSimulator()
    
    # Don't worry about this code for now
    qc = QuantumCircuit(1, 1)
    qc.initialize(q, 0)        
    qc.measure(0, 0)
    
    results = sim.run(qc, shots=10).result()
    answer = results.get_counts()
    return plot_histogram(answer)
print(q)
demonstrate_measure(q)
Statevector([0.70710678+0.j, 0.70710678+0.j],
            dims=(2,))
../_images/41c6028e0dd613f9faaa92e0b502c04b7a2c02b1416738e4ecd1356084870c0d.png
print(q2)
demonstrate_measure(q2)
Statevector([0.57735027+0.j, 0.81649658+0.j],
            dims=(2,))
../_images/41c6028e0dd613f9faaa92e0b502c04b7a2c02b1416738e4ecd1356084870c0d.png
print(q3)
demonstrate_measure(q3)
Statevector([0.40824829-0.40824829j, 0.57735027+0.57735027j],
            dims=(2,))
../_images/43af8b0d94c224351c86189cca6c2c78809abf14bdf70f8091a475da72e6ae7c.png

Summary#

  1. We looked at single-qubit systems. Qubits are the classical analogue of bits.

  2. Unlike a classical bit, a qubit can be in a superposition of states.

  3. To observe the state of a qubit, we must measure it, which stochastically produces a classical result.

  4. Next time we’ll look at operations on a single qubit.